These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18643119)
1. Partial control of chaotic systems. Zambrano S; Sanjuán MA; Yorke JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055201. PubMed ID: 18643119 [TBL] [Abstract][Full Text] [Related]
2. Exploring partial control of chaotic systems. Zambrano S; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026217. PubMed ID: 19391830 [TBL] [Abstract][Full Text] [Related]
3. Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems. van Beijeren H; Latz A; Dorfman JR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016312. PubMed ID: 11304358 [TBL] [Abstract][Full Text] [Related]
4. Approximating chaotic saddles for delay differential equations. Taylor SR; Campbell SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986 [TBL] [Abstract][Full Text] [Related]
5. Partially controlling transient chaos in the Lorenz equations. Capeáns R; Sabuco J; Sanjuán MA; Yorke JA Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2088):. PubMed ID: 28115608 [TBL] [Abstract][Full Text] [Related]
7. Order and chaos in the planar isosceles three-body problem. Zare K; Chesley S Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of "leaking" Hamiltonian systems. Schneider J; Tél T; Neufeld Z Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066218. PubMed ID: 12513395 [TBL] [Abstract][Full Text] [Related]
10. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
11. Poincaré recurrences from the perspective of transient chaos. Altmann EG; Tél T Phys Rev Lett; 2008 May; 100(17):174101. PubMed ID: 18518290 [TBL] [Abstract][Full Text] [Related]
13. Poincaré recurrences and transient chaos in systems with leaks. Altmann EG; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016204. PubMed ID: 19257119 [TBL] [Abstract][Full Text] [Related]
15. Driving trajectories in chaotic scattering. Macau EE; Caldas IL Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026215. PubMed ID: 11863640 [TBL] [Abstract][Full Text] [Related]
16. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
17. Wada basins and chaotic invariant sets in the Hénon-Heiles system. Aguirre J; Vallejo JC; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269 [TBL] [Abstract][Full Text] [Related]
18. Detecting chaos in heavy-noise environments. Tung WW; Gao J; Hu J; Yang L Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046210. PubMed ID: 21599273 [TBL] [Abstract][Full Text] [Related]
19. Controlling chaotic transients: Yorke's game of survival. Aguirre J; D'Ovidio F; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016203. PubMed ID: 14995689 [TBL] [Abstract][Full Text] [Related]
20. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator. Chen Z; Li Y; Liu X Chaos; 2016 Jun; 26(6):063112. PubMed ID: 27368777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]