These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18643207)

  • 41. Scaling of Linking and Writhing Numbers for Spherically Confined and Topologically Equilibrated Flexible Polymers.
    Marko JF
    J Stat Phys; 2011 Apr; 142(6):1353-1370. PubMed ID: 21686050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the relaxation of internal DNA segments during genome mapping in nanochannels.
    Jain A; Sheats J; Reifenberger JG; Cao H; Dorfman KD
    Biomicrofluidics; 2016 Sep; 10(5):054117. PubMed ID: 27795749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Knotting and Unknotting Dynamics of DNA Strands in Nanochannels.
    Micheletti C; Orlandini E
    ACS Macro Lett; 2014 Sep; 3(9):876-880. PubMed ID: 35596352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA manipulation, sorting, and mapping in nanofluidic systems.
    Levy SL; Craighead HG
    Chem Soc Rev; 2010 Mar; 39(3):1133-52. PubMed ID: 20179829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Presentation of large DNA molecules for analysis as nanoconfined dumbbells.
    Kounovsky-Shafer KL; Hernández-Ortiz JP; Jo K; Odijk T; de Pablo JJ; Schwartz DC
    Macromolecules; 2013 Oct; 46(20):8356-8368. PubMed ID: 24683272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels.
    Tegenfeldt JO; Prinz C; Cao H; Chou S; Reisner WW; Riehn R; Wang YM; Cox EC; Sturm JC; Silberzan P; Austin RH
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10979-83. PubMed ID: 15252203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detailed scaling analysis of low-force polyelectrolyte elasticity.
    McIntosh DB; Ribeck N; Saleh OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041803. PubMed ID: 19905329
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of electrostatic screening on the conformation of single DNA molecules confined in a nanochannel.
    Zhang C; Zhang F; van Kan JA; van der Maarel JR
    J Chem Phys; 2008 Jun; 128(22):225109. PubMed ID: 18554066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement.
    Arnold A; Bozorgui B; Frenkel D; Ha BY; Jun S
    J Chem Phys; 2007 Oct; 127(16):164903. PubMed ID: 17979390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the confinement of semiflexible chains under torsion.
    Emanuel M
    J Chem Phys; 2013 Jan; 138(3):034903. PubMed ID: 23343301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA confinement in nanochannels: physics and biological applications.
    Reisner W; Pedersen JN; Austin RH
    Rep Prog Phys; 2012 Oct; 75(10):106601. PubMed ID: 22975868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics.
    Wang C; Sheng ZH; Ouyang J; Xu JJ; Chen HY; Xia XH
    Chemphyschem; 2012 Feb; 13(3):762-8. PubMed ID: 22311832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement.
    Wang J; Gao H
    J Chem Phys; 2005 Aug; 123(8):084906. PubMed ID: 16164329
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confinement free energy and chain conformations of homopolymers confined between two repulsive walls.
    Wang Y
    J Chem Phys; 2004 Aug; 121(8):3898-904. PubMed ID: 15303958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paranematic-to-nematic ordering of a binary mixture of rodlike liquid crystals confined in cylindrical nanochannels.
    Całus S; Jabłońska B; Busch M; Rau D; Huber P; Kityk AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062501. PubMed ID: 25019799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulations corroborate telegraph model predictions for the extension distributions of nanochannel confined DNA.
    Bhandari AB; Dorfman KD
    Biomicrofluidics; 2019 Jul; 13(4):044110. PubMed ID: 31406555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force-Extension for DNA in a Nanoslit: Mapping between the 3D and 2D Limits.
    de Haan HW; Shendruk TN
    ACS Macro Lett; 2015 Jun; 4(6):632-635. PubMed ID: 35596406
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Confinement effects on monosaccharide transport in nanochannels.
    Ziemys A; Grattoni A; Fine D; Hussain F; Ferrari M
    J Phys Chem B; 2010 Sep; 114(34):11117-26. PubMed ID: 20738139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanouidic compaction of DNA by like-charged protein.
    Zhang C; Gong Z; Guttula D; Malar PP; van Kan JA; Doyle PS; van der Maarel JR
    J Phys Chem B; 2012 Mar; 116(9):3031-6. PubMed ID: 22320240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.