These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 18643215)
1. Inferential framework for nonstationary dynamics. I. Theory. Luchinsky DG; Smelyanskiy VN; Duggento A; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061105. PubMed ID: 18643215 [TBL] [Abstract][Full Text] [Related]
2. Inferential framework for nonstationary dynamics. II. Application to a model of physiological signaling. Duggento A; Luchinsky DG; Smelyanskiy VN; Khovanov I; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061106. PubMed ID: 18643216 [TBL] [Abstract][Full Text] [Related]
3. Broad range of neural dynamics from a time-varying FitzHugh-Nagumo model and its spiking threshold estimation. Faghih RT; Savla K; Dahleh MA; Brown EN IEEE Trans Biomed Eng; 2012 Mar; 59(3):816-23. PubMed ID: 22186931 [TBL] [Abstract][Full Text] [Related]
4. Waveform feature extraction and signal recovery in single-channel TVEP based on Fitzhugh-Nagumo stochastic resonance. Chen R; Xu G; Zheng Y; Yao P; Zhang S; Yan L; Zhang K J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492637 [No Abstract] [Full Text] [Related]
5. Parameters analysis of FitzHugh-Nagumo model for a reliable simulation. Xu B; Binczak S; Jacquir S; Pont O; Yahia H Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4334-7. PubMed ID: 25570951 [TBL] [Abstract][Full Text] [Related]
6. Detecting and characterizing phase synchronization in nonstationary dynamical systems. Lai YC; Frei MG; Osorio I Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026214. PubMed ID: 16605436 [TBL] [Abstract][Full Text] [Related]
7. Non-Gaussian stochastic dynamics of spins and oscillators: a continuous-time random walk approach. Packwood DM; Tanimura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061111. PubMed ID: 22304044 [TBL] [Abstract][Full Text] [Related]
8. Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential. Che Y; Geng LH; Han C; Cui S; Wang J Chaos; 2012 Jun; 22(2):023139. PubMed ID: 22757546 [TBL] [Abstract][Full Text] [Related]
9. Interplay of time-delayed feedback control and temporally correlated noise in excitable systems. Brandstetter S; Dahlem MA; Schöll E Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):391-421. PubMed ID: 20008408 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Burić N; Todorović D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341 [TBL] [Abstract][Full Text] [Related]
11. The Fitzhugh-Nagumo model: Firing modes with time-varying parameters & parameter estimation. Faghih RT; Savla K; Dahleh MA; Brown EN Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4116-9. PubMed ID: 21096631 [TBL] [Abstract][Full Text] [Related]
12. Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. Jensen AC; Ditlevsen S; Kessler M; Papaspiliopoulos O Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041114. PubMed ID: 23214536 [TBL] [Abstract][Full Text] [Related]
13. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Dureau J; Kalogeropoulos K; Baguelin M Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757 [TBL] [Abstract][Full Text] [Related]
14. Amplitude death with mean-field diffusion. Sharma A; Shrimali MD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):057204. PubMed ID: 23004911 [TBL] [Abstract][Full Text] [Related]
15. Integrate-and-fire models with nonlinear leakage. Feng J; Brown D Bull Math Biol; 2000 May; 62(3):467-81. PubMed ID: 10812717 [TBL] [Abstract][Full Text] [Related]
16. Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model. Gong PL; Xu JX Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031906. PubMed ID: 11308677 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations. Tanabe S; Pakdaman K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031911. PubMed ID: 11308682 [TBL] [Abstract][Full Text] [Related]
18. Global dynamics of a stochastic neuronal oscillator. Yamanobe T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052709. PubMed ID: 24329298 [TBL] [Abstract][Full Text] [Related]
19. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Leander J; Lundh T; Jirstrand M Math Biosci; 2014 May; 251():54-62. PubMed ID: 24631177 [TBL] [Abstract][Full Text] [Related]
20. Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Quach M; Brunel N; d'Alché-Buc F Bioinformatics; 2007 Dec; 23(23):3209-16. PubMed ID: 18042557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]