These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Multiscale theory of fluctuating interfaces: renormalization of atomistic models. Haselwandter CA; Vvedensky DD Phys Rev Lett; 2007 Jan; 98(4):046102. PubMed ID: 17358788 [TBL] [Abstract][Full Text] [Related]
6. Crossover and universality in the Wolf-Villain model. Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):010601. PubMed ID: 12935119 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model. Xun Z; Tang G; Han K; Xia H; Hao D; Li Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041126. PubMed ID: 22680438 [TBL] [Abstract][Full Text] [Related]
8. Scaling in the crossover from random to correlated growth. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021605. PubMed ID: 16605348 [TBL] [Abstract][Full Text] [Related]
9. Dynamic renormalization group study of a generalized continuum model of crystalline surfaces. Cuerno R; Moro E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016110. PubMed ID: 11800739 [TBL] [Abstract][Full Text] [Related]
10. Dynamic properties in a family of competitive growing models. Horowitz CM; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504 [TBL] [Abstract][Full Text] [Related]
11. An examination of scaling behavior in unstable epitaxial mound growth via kinetic Monte Carlo simulations. Schneider JP; Margetis D; Gibou F; Ratsch C J Phys Condens Matter; 2019 Sep; 31(36):365301. PubMed ID: 31071698 [TBL] [Abstract][Full Text] [Related]
12. Edwards-Wilkinson equation from lattice transition rules. Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025102. PubMed ID: 12636731 [TBL] [Abstract][Full Text] [Related]
13. Normal dynamic scaling in the class of the nonlinear molecular-beam-epitaxy equation. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022128. PubMed ID: 24032796 [TBL] [Abstract][Full Text] [Related]
14. Derivation of continuum stochastic equations for discrete growth models. Park SC; Kim D; Park JM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015102. PubMed ID: 11800720 [TBL] [Abstract][Full Text] [Related]
16. Renormalization-group approach to an Abelian sandpile model on planar lattices. Lin CY; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021307. PubMed ID: 12241170 [TBL] [Abstract][Full Text] [Related]
17. Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models for kinetic surface roughening. Das Sarma S; Punyindu Chatraphorn P; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036144. PubMed ID: 11909202 [TBL] [Abstract][Full Text] [Related]
18. Kinetic Monte Carlo simulations of one-dimensional and two-dimensional traffic flows: comparison of two look-ahead rules. Sun Y; Timofeyev I Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052810. PubMed ID: 25353847 [TBL] [Abstract][Full Text] [Related]
19. Random walk on lattices: graph-theoretic approach to simulating long-range diffusion-attachment growth models. Limkumnerd S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032402. PubMed ID: 24730847 [TBL] [Abstract][Full Text] [Related]
20. Relaxation of particles in the sloped region in a conserved growth model. Kim Y; Yoon SY Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041609. PubMed ID: 12005839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]