These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18643271)

  • 1. Simulation of an atomistic dynamic field theory for monatomic liquids: freezing and glass formation.
    Berry J; Elder KR; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061506. PubMed ID: 18643271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass formation and thermodynamics of supercooled monatomic liquids.
    Hoang VV; Odagaki T
    J Phys Chem B; 2011 Jun; 115(21):6946-56. PubMed ID: 21553835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment.
    Eastwood MP; Chitra T; Jumper JM; Palmo K; Pan AC; Shaw DE
    J Phys Chem B; 2013 Oct; 117(42):12898-907. PubMed ID: 23841719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass and liquid phase diagram of a polyamorphic monatomic system.
    Reisman S; Giovambattista N
    J Chem Phys; 2013 Feb; 138(6):064509. PubMed ID: 23425481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of highly supercooled glass-forming alloys induced by anomalous surface wetting.
    Bi Q; Guo C; Lü Y
    Phys Chem Chem Phys; 2020 Feb; 22(8):4815-4822. PubMed ID: 32068220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do supercooled liquids freeze by spinodal decomposition?
    Bartell LS; Wu DT
    J Chem Phys; 2007 Nov; 127(17):174507. PubMed ID: 17994827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular forces and the glass transition.
    Hall RW; Wolynes PG
    J Phys Chem B; 2008 Jan; 112(2):301-12. PubMed ID: 17990867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origins of homogeneous crystal nucleation.
    Yi P; Rutledge GC
    Annu Rev Chem Biomol Eng; 2012; 3():157-82. PubMed ID: 22468601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-equilibrium theory of arrested spinodal decomposition.
    Olais-Govea JM; López-Flores L; Medina-Noyola M
    J Chem Phys; 2015 Nov; 143(17):174505. PubMed ID: 26547174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2010 Jun; 22(23):232102. PubMed ID: 21393759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of the glassy transition in simulations of the ferromagnetic plaquette Ising model.
    Davatolhagh S; Dariush D; Separdar L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031501. PubMed ID: 20365734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation.
    Spencer RK; Curry PF; Wickham RA
    J Chem Phys; 2016 Oct; 145(14):144902. PubMed ID: 27782527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.
    Berry J; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062303. PubMed ID: 25019772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural fluctuations and orientational glass of levoglucosan--High stability against ordering and absence of structural glass.
    Tombari E; Johari GP
    J Chem Phys; 2015 Mar; 142(10):104501. PubMed ID: 25770545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.