These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18643406)

  • 1. Delayed-choice test of quantum complementarity with interfering single photons.
    Jacques V; Wu E; Grosshans F; Treussart F; Grangier P; Aspect A; Roch JF
    Phys Rev Lett; 2008 Jun; 100(22):220402. PubMed ID: 18643406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Delayed-Choice Experiment with a Beam Splitter in a Quantum Superposition.
    Zheng SB; Zhong YP; Xu K; Wang QJ; Wang H; Shen LT; Yang CP; Martinis JM; Cleland AN; Han SY
    Phys Rev Lett; 2015 Dec; 115(26):260403. PubMed ID: 26764976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental realization of Wheeler's delayed-choice gedanken experiment.
    Jacques V; Wu E; Grosshans F; Treussart F; Grangier P; Aspect A; Roch JF
    Science; 2007 Feb; 315(5814):966-8. PubMed ID: 17303748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations of the delayed-choice quantum eraser using coherent photons.
    Kim S; Ham BS
    Sci Rep; 2023 Jun; 13(1):9758. PubMed ID: 37328491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entanglement-enabled delayed-choice experiment.
    Kaiser F; Coudreau T; Milman P; Ostrowsky DB; Tanzilli S
    Science; 2012 Nov; 338(6107):637-40. PubMed ID: 23118184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A twofold quantum delayed-choice experiment in a superconducting circuit.
    Liu K; Xu Y; Wang W; Zheng SB; Roy T; Kundu S; Chand M; Ranadive A; Vijay R; Song Y; Duan L; Sun L
    Sci Adv; 2017 May; 3(5):e1603159. PubMed ID: 28508079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complementarity experiment with an interferometer at the quantum-classical boundary.
    Bertet P; Osnaghi S; Rauschenbeutel A; Nogues G; Auffeves A; Brune M; Raimond JM; Haroche S
    Nature; 2001 May; 411(6834):166-70. PubMed ID: 11346787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of delayed-choice decoherence suppression.
    Lee JC; Lim HT; Hong KH; Jeong YC; Kim MS; Kim YH
    Nat Commun; 2014 Jul; 5():4522. PubMed ID: 25072967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending Wheeler's delayed-choice experiment to space.
    Vedovato F; Agnesi C; Schiavon M; Dequal D; Calderaro L; Tomasin M; Marangon DG; Stanco A; Luceri V; Bianco G; Vallone G; Villoresi P
    Sci Adv; 2017 Oct; 3(10):e1701180. PubMed ID: 29075668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of quantum delayed-choice experiment through a single shot.
    Chen D; Wang Y; Zhang Y; Wu Q; Zhao J; Fang Y; Yang C
    Opt Express; 2021 Sep; 29(20):32464-32473. PubMed ID: 34615316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot.
    Patel RB; Bennett AJ; Cooper K; Atkinson P; Nicoll CA; Ritchie DA; Shields AJ
    Phys Rev Lett; 2008 May; 100(20):207405. PubMed ID: 18518580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal for a quantum delayed-choice experiment.
    Ionicioiu R; Terno DR
    Phys Rev Lett; 2011 Dec; 107(23):230406. PubMed ID: 22182073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.
    Ma XS; Zotter S; Tetik N; Qarry A; Jennewein T; Zeilinger A
    Opt Express; 2011 Nov; 19(23):22723-30. PubMed ID: 22109153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment.
    Xavier GB; von der Weid JP
    Opt Lett; 2011 May; 36(10):1764-6. PubMed ID: 21593883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the classical interference visibility of an asymmetric Mach-Zehnder interferometer based on planar lightwave circuit technology.
    Ren M; Li X; Zhang J; Wang L; Wang Y; Wang H; Li J; Yin X; Wu Y; An J
    Appl Opt; 2019 Oct; 58(28):7817-7822. PubMed ID: 31674465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stable polarization independent Mach-Zehnder interferometer.
    Mičuda M; Doláková E; Straka I; Miková M; Dušek M; Fiurášek J; Ježek M
    Rev Sci Instrum; 2014 Aug; 85(8):083103. PubMed ID: 25173242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum beat of two single photons.
    Legero T; Wilk T; Hennrich M; Rempe G; Kuhn A
    Phys Rev Lett; 2004 Aug; 93(7):070503. PubMed ID: 15324220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the avalanche diode as a photon detector in quantum optical interferometers.
    Schmid K; Frins E; Dultz W; Schmitzer H
    Appl Opt; 2012 Nov; 51(31):7560-5. PubMed ID: 23128703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Particle Interference in an Electronic Mach-Zehnder Interferometer.
    Kotilahti J; Burset P; Moskalets M; Flindt C
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Hall Valley Splitters and a Tunable Mach-Zehnder Interferometer in Graphene.
    Jo M; Brasseur P; Assouline A; Fleury G; Sim HS; Watanabe K; Taniguchi T; Dumnernpanich W; Roche P; Glattli DC; Kumada N; Parmentier FD; Roulleau P
    Phys Rev Lett; 2021 Apr; 126(14):146803. PubMed ID: 33891444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.