These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18643557)

  • 1. Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity.
    Johne R; Gippius NA; Pavlovic G; Solnyshkov DD; Shelykh IA; Malpuech G
    Phys Rev Lett; 2008 Jun; 100(24):240404. PubMed ID: 18643557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabright source of entangled photon pairs.
    Dousse A; Suffczyński J; Beveratos A; Krebs O; Lemaître A; Sagnes I; Bloch J; Voisin P; Senellart P
    Nature; 2010 Jul; 466(7303):217-20. PubMed ID: 20613838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient generation of entangled photons by controlling cavity bipolariton states.
    Oka H; Ishihara H
    Phys Rev Lett; 2008 May; 100(17):170505. PubMed ID: 18518266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence of an entangled exciton-photon state.
    Hudson AJ; Stevenson RM; Bennett AJ; Young RJ; Nicoll CA; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Phys Rev Lett; 2007 Dec; 99(26):266802. PubMed ID: 18233599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet.
    Zhang X; Shi H; Dai H; Zhang X; Sun XW; Zhang Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5081-5089. PubMed ID: 31903740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.
    Qian C; Wu S; Song F; Peng K; Xie X; Yang J; Xiao S; Steer MJ; Thayne IG; Tang C; Zuo Z; Jin K; Gu C; Xu X
    Phys Rev Lett; 2018 May; 120(21):213901. PubMed ID: 29883144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand.
    Huber D; Reindl M; Covre da Silva SF; Schimpf C; Martín-Sánchez J; Huang H; Piredda G; Edlinger J; Rastelli A; Trotta R
    Phys Rev Lett; 2018 Jul; 121(3):033902. PubMed ID: 30085806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot.
    Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME
    Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot.
    Hohenester U; Pfanner G; Seliger M
    Phys Rev Lett; 2007 Jul; 99(4):047402. PubMed ID: 17678402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot spectroscopy using cavity quantum electrodynamics.
    Winger M; Badolato A; Hennessy KJ; Hu EL; Imamoğlu A
    Phys Rev Lett; 2008 Nov; 101(22):226808. PubMed ID: 19113509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposal for pulsed on-demand sources of photonic cluster state strings.
    Lindner NH; Rudolph T
    Phys Rev Lett; 2009 Sep; 103(11):113602. PubMed ID: 19792371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots.
    Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ
    Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of incoherent pumping in a strongly coupled system of exchange-split excitons and pillar-microcavities.
    Lee YS; Lin SD
    Opt Lett; 2014 Dec; 39(23):6640-3. PubMed ID: 25490641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry-Pérot Cavity.
    Mony J; Hertzog M; Kushwaha K; Börjesson K
    J Phys Chem C Nanomater Interfaces; 2018 Nov; 122(43):24917-24923. PubMed ID: 30450150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.