These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18643691)

  • 1. Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electric force microscopy.
    Barboza AP; Gomes AP; Archanjo BS; Araujo PT; Jorio A; Ferlauto AS; Mazzoni MS; Chacham H; Neves BR
    Phys Rev Lett; 2008 Jun; 100(25):256804. PubMed ID: 18643691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis.
    Padmaraj D; Zagozdzon-Wosik W; Xie LM; Hadjiev VG; Cherukuri P; Wosik J
    Nanotechnology; 2009 Jan; 20(3):035201. PubMed ID: 19417287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Electronic Doping of Single-Walled Carbon Nanotubes by Gaseous Ammonia with Dielectric Force Microscopy.
    Zhang J; Lu W; Li YS; Lu D; Zhang T; Wang X; Chen L
    J Phys Chem Lett; 2012 Dec; 3(23):3509-12. PubMed ID: 26290980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes.
    Yang FH; Lachawiec AJ; Yang RT
    J Phys Chem B; 2006 Mar; 110(12):6236-44. PubMed ID: 16553439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating the electronic properties along carbon nanotubes via tube-substrate interaction.
    Soares JS; Barboza AP; Araujo PT; Barbosa Neto NM; Nakabayashi D; Shadmi N; Yarden TS; Ismach A; Geblinger N; Joselevich E; Vilani C; Cançado LG; Novotny L; Dresselhaus G; Dresselhaus MS; Neves BR; Mazzoni MS; Jorio A
    Nano Lett; 2010 Dec; 10(12):5043-8. PubMed ID: 21050011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma.
    Hassanien A; Tokumoto M; Umek P; Vrbanič D; Mozetič M; Mihailović D; Venturini P; Pejovnik S
    Nanotechnology; 2005 Feb; 16(2):278-81. PubMed ID: 21727436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube.
    Okuno Y; Saito Y; Kawata S; Verma P
    Phys Rev Lett; 2013 Nov; 111(21):216101. PubMed ID: 24313506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct intermolecular force measurements between functional groups and individual metallic or semiconducting single-walled carbon nanotubes.
    Thong YX; Poon YF; Chen TY; Li LJ; Chan-Park MB
    Small; 2014 Feb; 10(4):750-7. PubMed ID: 24106155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible fluorescence induced by the metal semiconductor transition in composites of carbon nanotubes with noble metal nanoparticles.
    Subramaniam C; Sreeprasad TS; Pradeep T; Pavan Kumar GV; Narayana C; Yajima T; Sugawara Y; Tanaka H; Ogawa T; Chakrabarti J
    Phys Rev Lett; 2007 Oct; 99(16):167404. PubMed ID: 17995292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes.
    Araujo PT; Barbosa Neto NM; Chacham H; Carara SS; Soares JS; Souza AD; Cançado LG; de Oliveira AB; Batista RJ; Joselevich E; Dresselhaus MS; Jorio A
    Nano Lett; 2012 Aug; 12(8):4110-6. PubMed ID: 22731916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transfer events in semiconducting single-wall carbon nanotubes.
    Oelsner C; Herrero MA; Ehli C; Prato M; Guldi DM
    J Am Chem Soc; 2011 Nov; 133(46):18696-706. PubMed ID: 22039995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.