These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 18643941)
21. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Karberg NJ; Pregitzer KS; King JS; Friend AL; Wood JR Oecologia; 2005 Jan; 142(2):296-306. PubMed ID: 15378342 [TBL] [Abstract][Full Text] [Related]
22. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Norby RJ; Iversen CM Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292 [TBL] [Abstract][Full Text] [Related]
24. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. Iversen CM; Ledford J; Norby RJ New Phytol; 2008; 179(3):837-847. PubMed ID: 18537885 [TBL] [Abstract][Full Text] [Related]
25. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. McGrath JM; Karnosky DF; Ainsworth EA Environ Pollut; 2010 Apr; 158(4):1023-8. PubMed ID: 19625117 [TBL] [Abstract][Full Text] [Related]
26. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Olszyk DM; Johnson MG; Phillips DL; Seidler RJ; Tingey DT; Watrud LS Environ Pollut; 2001; 115(3):447-62. PubMed ID: 11789925 [TBL] [Abstract][Full Text] [Related]
27. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3. Riikonen J; Kets K; Darbah J; Oksanen E; Sober A; Vapaavuori E; Kubiske ME; Nelson N; Karnosky DF Tree Physiol; 2008 Feb; 28(2):243-54. PubMed ID: 18055435 [TBL] [Abstract][Full Text] [Related]
28. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence. Das Gupta S; Mackenzie MD PLoS One; 2016; 11(11):e0165602. PubMed ID: 27832089 [TBL] [Abstract][Full Text] [Related]
29. Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting. Rhea L; King J; Kubiske M; Saliendra N; Teclaw R Environ Pollut; 2010 Apr; 158(4):1079-87. PubMed ID: 19783339 [TBL] [Abstract][Full Text] [Related]
30. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Lipson DA; Kuske CR; Gallegos-Graves LV; Oechel WC Glob Chang Biol; 2014 Aug; 20(8):2555-65. PubMed ID: 24753089 [TBL] [Abstract][Full Text] [Related]
31. Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks. Larsen PE; Cseke LJ; Miller RM; Collart FR J Theor Biol; 2014 Oct; 359():61-71. PubMed ID: 24928153 [TBL] [Abstract][Full Text] [Related]
32. Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land. Fortier J; Truax B; Gagnon D; Lambert F Sci Rep; 2019 Apr; 9(1):6296. PubMed ID: 31000761 [TBL] [Abstract][Full Text] [Related]
33. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China. Wang W; Guo J; Oikawa T J Biosci; 2007 Mar; 32(2):375-84. PubMed ID: 17435328 [TBL] [Abstract][Full Text] [Related]
34. Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: An experimental case study and a literature meta-analysis. Li P; Yin R; Shang B; Agathokleous E; Zhou H; Feng Z Sci Total Environ; 2020 Mar; 710():136379. PubMed ID: 31926420 [TBL] [Abstract][Full Text] [Related]
35. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007 [TBL] [Abstract][Full Text] [Related]
36. Transitory effects of elevated atmospheric CO₂ on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. Ferguson SD; Nowak RS New Phytol; 2011 Jun; 190(4):953-967. PubMed ID: 21355868 [TBL] [Abstract][Full Text] [Related]
37. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Calfapietra C; Gielen B; Galema AN; Lukac M; De Angelis P; Moscatelli MC; Ceulemans R; Scarascia-Mugnozza G Tree Physiol; 2003 Aug; 23(12):805-14. PubMed ID: 12865246 [TBL] [Abstract][Full Text] [Related]
38. [Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China]. Tu LH; Hu TX; Zhang J; He YY; Tian XY; Xiao YL Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2472-8. PubMed ID: 21328931 [TBL] [Abstract][Full Text] [Related]
39. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532 [TBL] [Abstract][Full Text] [Related]
40. Tree species diversity interacts with elevated CO2 to induce a greater root system response. Smith AR; Lukac M; Bambrick M; Miglietta F; Godbold DL Glob Chang Biol; 2013 Jan; 19(1):217-28. PubMed ID: 23504733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]