BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18644146)

  • 1. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.
    Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y
    BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model.
    Mao Y; London NR; Ma L; Dvorkin D; Da Y
    Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GVCBLUP: a computer package for genomic prediction and variance component estimation of additive and dominance effects.
    Wang C; Prakapenka D; Wang S; Pulugurta S; Runesha HB; Da Y
    BMC Bioinformatics; 2014 Aug; 15(1):270. PubMed ID: 25107495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies.
    Gyenesei A; Moody J; Laiho A; Semple CA; Haley CS; Wei WH
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W628-32. PubMed ID: 22689639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.
    Zhang W; Dai X; Wang Q; Xu S; Zhao PX
    PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNPEVG: a graphical tool for GWAS graphing with mouse clicks.
    Wang S; Dvorkin D; Da Y
    BMC Bioinformatics; 2012 Nov; 13():319. PubMed ID: 23199373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FastEpistasis: a high performance computing solution for quantitative trait epistasis.
    Schüpbach T; Xenarios I; Bergmann S; Kapur K
    Bioinformatics; 2010 Jun; 26(11):1468-9. PubMed ID: 20375113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
    Kadarmideen HN; Carmelo VAO
    Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data.
    Ma L; Yang J; Runesha HB; Tanaka T; Ferrucci L; Bandinelli S; Da Y
    BMC Med Genet; 2010 Apr; 11():55. PubMed ID: 20370913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data).
    de Los Campos G; Sorensen DA; Toro MA
    G3 (Bethesda); 2019 May; 9(5):1429-1436. PubMed ID: 30877081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of inclusion non-additive effects on genome-wide association and variance's components in Scottish black sheep.
    Alipanah M; Roudbari Z; Momen M; Esmailizadeh A
    Anim Biotechnol; 2023 Dec; 34(8):3765-3773. PubMed ID: 37343283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying quantitative trait locus by genetic background interactions in association studies.
    Jannink JL
    Genetics; 2007 May; 176(1):553-61. PubMed ID: 17179077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis.
    Gayán J; González-Pérez A; Bermudo F; Sáez ME; Royo JL; Quintas A; Galan JJ; Morón FJ; Ramirez-Lorca R; Real LM; Ruiz A
    BMC Genomics; 2008 Jul; 9():360. PubMed ID: 18667089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing.
    Caylak G; Tastan O; Cicek AE
    J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.