These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. Boyd M; Ross SC; Dorrens J; Fullerton NE; Tan KW; Zalutsky MR; Mairs RJ J Nucl Med; 2006 Jun; 47(6):1007-15. PubMed ID: 16741311 [TBL] [Abstract][Full Text] [Related]
3. An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects. Boyd M; Mairs RJ; Keith WN; Ross SC; Welsh P; Akabani G; Owens J; Vaidyanathan G; Carruthers R; Dorrens J; Zalutsky MR J Gene Med; 2004 Aug; 6(8):937-47. PubMed ID: 15293352 [TBL] [Abstract][Full Text] [Related]
4. Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill. Boyd M; Mairs RJ; Mairs SC; Wilson L; Livingstone A; Cunningham SH; Brown MM; Quigg M; Keith WN Oncogene; 2001 Nov; 20(53):7804-8. PubMed ID: 11753659 [TBL] [Abstract][Full Text] [Related]
5. A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo. Mairs RJ; Ross SC; McCluskey AG; Boyd M J Nucl Med; 2007 Sep; 48(9):1519-26. PubMed ID: 17704246 [TBL] [Abstract][Full Text] [Related]
6. A gene therapy/targeted radiotherapy strategy for radiation cell kill by. Boyd M; Mairs RJ; Cunningham SH; Mairs SC; McCluskey A; Livingstone A; Stevenson K; Brown MM; Wilson L; Carlin S; Wheldon TE J Gene Med; 2001; 3(2):165-72. PubMed ID: 11318115 [TBL] [Abstract][Full Text] [Related]
7. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Boyd M; Cunningham SH; Brown MM; Mairs RJ; Wheldon TE Gene Ther; 1999 Jun; 6(6):1147-52. PubMed ID: 10455418 [TBL] [Abstract][Full Text] [Related]
8. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy. Boyd M; Mairs SC; Stevenson K; Livingstone A; Clark AM; Ross SC; Mairs RJ J Gene Med; 2002; 4(5):567-76. PubMed ID: 12221650 [TBL] [Abstract][Full Text] [Related]
9. Application of targeted radiotherapy/gene therapy to bladder cancer cell lines. Fullerton NE; Mairs RJ; Kirk D; Keith WN; Carruthers R; McCluskey AG; Brown M; Wilson L; Boyd M Eur Urol; 2005 Feb; 47(2):250-6. PubMed ID: 15661422 [TBL] [Abstract][Full Text] [Related]
10. Comparison of radiohaloanalogues of meta-iodobenzylguanidine (MIBG) for a combined gene- and targeted radiotherapy approach to bladder carcinoma. Fullerton NE; Boyd M; Ross SC; Pimlott SL; Babich J; Kirk D; Zalutsky MR; Mairs RJ Med Chem; 2005 Nov; 1(6):611-8. PubMed ID: 16787344 [TBL] [Abstract][Full Text] [Related]
11. Targeted radiotherapy: microgray doses and the bystander effect. Mairs RJ; Fullerton NE; Zalutsky MR; Boyd M Dose Response; 2007 Apr; 5(3):204-13. PubMed ID: 18648605 [TBL] [Abstract][Full Text] [Related]
12. [131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter. McCluskey AG; Boyd M; Ross SC; Cosimo E; Clark AM; Angerson WJ; Gaze MN; Mairs RJ Clin Cancer Res; 2005 Nov; 11(21):7929-37. PubMed ID: 16278418 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity of alpha-particle-emitting m-[211At]astatobenzylguanidine on human neuroblastoma cells. Strickland DK; Vaidyanathan G; Zalutsky MR Cancer Res; 1994 Oct; 54(20):5414-9. PubMed ID: 7923174 [TBL] [Abstract][Full Text] [Related]
14. Combining a targeted radiotherapy and gene therapy approach for adenocarcinoma of prostate. Fullerton NE; Boyd M; Mairs RJ; Keith WN; Alderwish O; Brown MM; Livingstone A; Kirk D Prostate Cancer Prostatic Dis; 2004; 7(4):355-63. PubMed ID: 15477875 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic effect of m-[131I]- and m-[125I]iodobenzylguanidine on neuroblastoma multicellular tumor spheroids of different sizes. Weber W; Weber J; Senekowitsch-Schmidtke R Cancer Res; 1996 Dec; 56(23):5428-34. PubMed ID: 8968097 [TBL] [Abstract][Full Text] [Related]
16. Differential cytotoxicity of [123I]IUdR, [125I]IUdR and [131I]IUdR to human glioma cells in monolayer or spheroid culture: effect of proliferative heterogeneity and radiation cross-fire. Neshasteh-Riz A; Mairs RJ; Angerson WJ; Stanton PD; Reeves JR; Rampling R; Owens J; Wheldon TE Br J Cancer; 1998; 77(3):385-90. PubMed ID: 9472632 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory and stimulatory bystander effects are differentially induced by Iodine-125 and Iodine-123. Kishikawa H; Wang K; Adelstein SJ; Kassis AI Radiat Res; 2006 Jun; 165(6):688-94. PubMed ID: 16802869 [TBL] [Abstract][Full Text] [Related]
18. Optimizing MIBG therapy of neuroendocrine tumors: preclinical evidence of dose maximization and synergy. Mairs RJ; Boyd M Nucl Med Biol; 2008 Aug; 35 Suppl 1():S9-20. PubMed ID: 18707637 [TBL] [Abstract][Full Text] [Related]
19. Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions. Cunningham SH; Mairs RJ; Wheldon TE; Welsh PC; Vaidyanathan G; Zalutsky MR Br J Cancer; 1998 Jun; 77(12):2061-8. PubMed ID: 9649115 [TBL] [Abstract][Full Text] [Related]