These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18644314)

  • 1. A NURBS-based technique for subject-specific construction of knee bone geometry.
    Au AG; Palathinkal D; Liggins AB; Raso VJ; Carey J; Lambert RG; Amirfazli A
    Comput Methods Programs Biomed; 2008 Oct; 92(1):20-34. PubMed ID: 18644314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models.
    Lee C; Lodwick D; Hasenauer D; Williams JL; Lee C; Bolch WE
    Phys Med Biol; 2007 Jun; 52(12):3309-33. PubMed ID: 17664546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical reconstruction of human femoral condyles.
    van den Heever DJ; Scheffer C; Erasmus P; Dillon E
    J Biomech Eng; 2011 Jun; 133(6):064504. PubMed ID: 21744933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring inter-subject anatomic variability using a population of patient-specific femurs and a statistical shape and intensity model.
    Bah MT; Shi J; Browne M; Suchier Y; Lefebvre F; Young P; King L; Dunlop DG; Heller MO
    Med Eng Phys; 2015 Oct; 37(10):995-1007. PubMed ID: 26363532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customization of a generic 3D model of the distal femur using diagnostic radiographs.
    Schmutz B; Reynolds KJ; Slavotinek JP
    J Med Eng Technol; 2008; 32(2):156-61. PubMed ID: 18297506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for surface fitting method of articular joint surfaces.
    Hirokawa S; Ueki T; Ohtsuki A
    J Biomech; 2004 Oct; 37(10):1551-9. PubMed ID: 15336930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of bone heterogeneity in subject-specific finite element models for knee.
    Au AG; Liggins AB; Raso VJ; Carey J; Amirfazli A
    Comput Methods Programs Biomed; 2010 Aug; 99(2):154-71. PubMed ID: 20022400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis.
    Chandran V; Maquer G; Gerig T; Zysset P; Reyes M
    Med Image Anal; 2019 Feb; 52():42-55. PubMed ID: 30471462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a generic 3D model of the distal femur.
    Schmutz B; Reynolds KJ; Slavotinek JP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):305-12. PubMed ID: 17132616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci.
    Gu KB; Li LP
    Med Eng Phys; 2011 May; 33(4):497-503. PubMed ID: 21208821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for developing CAD geometry of long bones using clinical CT data.
    Davis ML; Vavalle NA; Stitzel JD; Gayzik FS
    Med Eng Phys; 2015 Nov; 37(11):1116-23. PubMed ID: 26432286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of changing bone and muscle size on limb inertial properties and limb dynamics: a computer simulation.
    Dellanini L; Hawkins D; Martin B; Stover S
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):167-76. PubMed ID: 15512760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.