These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18644314)

  • 21. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Validation of Statistical Models of Femur Geometry for Use with Parametric Finite Element Models.
    Klein KF; Hu J; Reed MP; Hoff CN; Rupp JD
    Ann Biomed Eng; 2015 Oct; 43(10):2503-14. PubMed ID: 25808208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources.
    Lee C; Lee C; Shah AP; Bolch WE
    Phys Med Biol; 2006 Nov; 51(21):5391-407. PubMed ID: 17047259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur.
    Polgar K; Viceconti M; O'Connor JJ
    Proc Inst Mech Eng H; 2001; 215(1):85-94. PubMed ID: 11323989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A correlative study of the geometry and anatomy of the distal femur.
    Elias SG; Freeman MA; Gokcay EI
    Clin Orthop Relat Res; 1990 Nov; (260):98-103. PubMed ID: 2225651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy.
    Taddei F; Cristofolini L; Martelli S; Gill HS; Viceconti M
    J Biomech; 2006; 39(13):2457-67. PubMed ID: 16213507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic modeling of knee joint motion for the virtual reality dynamic anatomy (VRDA) tool.
    Baillot Y; Rolland JP; Wright DL
    Stud Health Technol Inform; 1999; 62():30-5. PubMed ID: 10538376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Development and validation of a finite element model of human knee joint for dynamic analysis].
    Li H; Gu Y; Ruan S; Cui S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):97-101. PubMed ID: 22404016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRI2SOLID: an application of reverse engineering methods to the creation of CAD models of bone segments.
    Viceconti M; Zannoni C; Pierotti L
    Comput Methods Programs Biomed; 1998 Jun; 56(3):211-20. PubMed ID: 9725647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mechanics of the knee joint, part II, the final rotation (author's transl)].
    Menschik A
    Z Orthop Ihre Grenzgeb; 1975 Jun; 113(3):388-400. PubMed ID: 1179807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variations of femoral condyle shape.
    Biscević M; Hebibović M; Smrke D
    Coll Antropol; 2005 Dec; 29(2):409-14. PubMed ID: 16417136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
    Bijar A; Rohan PY; Perrier P; Payan Y
    Ann Biomed Eng; 2016 Jan; 44(1):16-34. PubMed ID: 26577253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.