These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18644314)

  • 41. Automated method for clinic and morphologic analysis of bones using implicit modeling technique.
    Gargouri I; De Guise JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5095-8. PubMed ID: 18003152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Femur shape prediction by multiple regression based on quadric surface fitting.
    Sholukha V; Chapman T; Salvia P; Moiseev F; Euran F; Rooze M; Van Sint Jan S
    J Biomech; 2011 Feb; 44(4):712-8. PubMed ID: 21122862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping cortical bone stiffness and mineralization from endosteal to periosteal surfaces of bovine mid-diaphyseal femur.
    Hage IS; Hage RS; Yassine RA; Seif CY; Hamade RF
    J Bone Miner Metab; 2021 Sep; 39(5):725-736. PubMed ID: 33822263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach.
    Mulder L; van Rietbergen B; Noordhoek NJ; Ito K
    Bone; 2012 Jan; 50(1):200-8. PubMed ID: 22057082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics.
    Lansdown DA; Zaid M; Pedoia V; Subburaj K; Souza R; Benjamin C; Li X
    J Magn Reson Imaging; 2015 Aug; 42(2):533-8. PubMed ID: 25545617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo tibiofemoral contact analysis using 3D MRI-based knee models.
    DeFrate LE; Sun H; Gill TJ; Rubash HE; Li G
    J Biomech; 2004 Oct; 37(10):1499-504. PubMed ID: 15336924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Border-tracing algorithm implementation for the femoral geometry reconstruction.
    Testi D; Zannoni C; Cappello A; Viceconti M
    Comput Methods Programs Biomed; 2001 Jun; 65(3):175-82. PubMed ID: 11339979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CT data sets surface extraction for biomechanical modeling of long bones.
    Viceconti M; Zannoni C; Testi D; Cappello A
    Comput Methods Programs Biomed; 1999 Jun; 59(3):159-66. PubMed ID: 10386765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces.
    Wang C; Xu F; Hsu MC; Krishnamurthy A
    Comput Aided Geom Des; 2017; 52-53():190-204. PubMed ID: 29051678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ricci-flow based conformal mapping of the proximal femur to identify exercise loading effects.
    Narra N; Abe S; Dimitrov V; Nikander R; Kouhia R; Sievänen H; Hyttinen J
    Sci Rep; 2018 Mar; 8(1):4823. PubMed ID: 29555952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of an enhanced homogenization technique to the structural multiscale analysis of a femur bone.
    Marques M; Belinha J; Oliveira AF; Manzanares Céspedes MC; Jorge RMN
    Comput Methods Biomech Biomed Engin; 2020 Sep; 23(12):868-878. PubMed ID: 32427494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
    Dai Y; Niebur GL
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):599-606. PubMed ID: 19308870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing.
    Giudice JS; Poulard D; Nie B; Wu T; Panzer MB
    Front Bioeng Biotechnol; 2018; 6():149. PubMed ID: 30406094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering and Physics 20 (1998): 1-10.
    Viceconti M
    Med Eng Phys; 2000 Jun; 22(5):379-80. PubMed ID: 11186609
    [No Abstract]   [Full Text] [Related]  

  • 56. A method for generating large datasets of organ geometries for radiotherapy treatment planning studies.
    Hu N; Cerviño L; Segars P; Lewis J; Shan J; Jiang S; Zheng X; Wang G
    Radiol Oncol; 2014 Dec; 48(4):408-15. PubMed ID: 25435856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient and Anti-Aliased Trimming for Rendering Large NURBS Models.
    Schollmeyer A; Froehlich B
    IEEE Trans Vis Comput Graph; 2019 Mar; 25(3):1489-1498. PubMed ID: 29993810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. IETI - Isogeometric Tearing and Interconnecting.
    Kleiss SK; Pechstein C; Jüttler B; Tomar S
    Comput Methods Appl Mech Eng; 2012 Nov; 247-248(11):201-215. PubMed ID: 24511167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using two palpable measurements improves the subject-specific femoral modeling.
    Luo W; Stanhope SJ; Sheehan FT
    J Biomech; 2009 Aug; 42(12):2000-5. PubMed ID: 19520371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow.
    Zhang Y; Bazilevs Y; Goswami S; Bajaj CL; Hughes TJ
    Comput Methods Appl Mech Eng; 2007 May; 196(29-30):2943-2959. PubMed ID: 20300489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.