These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18644618)

  • 21. Assessing the safe operating space of aquatic macrophyte biomass to control the terrestrialization of a grass-type shallow lake in China.
    Bai J; Guan Y; Liu P; Zhang L; Cui B; Li X; Liu X
    J Environ Manage; 2020 Jul; 266():110479. PubMed ID: 32310127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Responses of macroinvertebrate assemblages to environmental variations in the river-oxbow lake system of the Zoige wetland (Bai River, Qinghai-Tibet Plateau).
    Zhou X; Xu M; Wang Z; Yu B; Shao X
    Sci Total Environ; 2019 Apr; 659():150-160. PubMed ID: 30597465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fragmentation and groundwater supply as major drivers of algal and plant diversity and relative cover dynamics along a highly modified lowland river.
    Bolpagni R; Racchetti E; Laini A
    Sci Total Environ; 2016 Oct; 568():875-884. PubMed ID: 27335161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weed cutting in a large river reduces ecosystem metabolic rates in the case of River Gudenå (Denmark).
    Paraskevi M; Pau GG; Ada P; Annette BP; Tenna R
    J Environ Manage; 2022 Jul; 314():115014. PubMed ID: 35447446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain.
    Silva TS; Melack JM; Novo EM
    Glob Chang Biol; 2013 Nov; 19(11):3379-89. PubMed ID: 23818397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Species richness and influencing factors of aquatic plant in the Kaidu River Basin, Xinjiang, China].
    Li YH; Hao T; Gong XS; Yang YJ; Li ZQ
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1691-1698. PubMed ID: 32530248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transplanting macrophytes as a rehabilitation technique for lowland streams and their influence on macroinvertebrate assemblages.
    Altieri P; Paz LE; Jensen RF; Donadelli J; Capítulo AR
    An Acad Bras Cienc; 2021; 93(3):e20191029. PubMed ID: 34231754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Options for managing hypoxic blackwater events in river systems: a review.
    Kerr JL; Baldwin DS; Whitworth KL
    J Environ Manage; 2013 Jan; 114():139-47. PubMed ID: 23137913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring the effects of floods on submerged macrophytes in a large river.
    Ibáñez C; Caiola N; Rovira A; Real M
    Sci Total Environ; 2012 Dec; 440():132-9. PubMed ID: 22939413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative test of ecological assessment methods of lowland streams based on long-term monitoring data of macrophytes.
    Wiegleb G; Gebler D; van de Weyer K; Birk S
    Sci Total Environ; 2016 Jan; 541():1269-1281. PubMed ID: 26476066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macrophyte Controls on Urban Stream Microbial Metabolic Activity.
    Romeijn P; Hannah DM; Krause S
    Environ Sci Technol; 2021 Apr; 55(8):4585-4596. PubMed ID: 33754717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species.
    Xie D; Yu D; You WH; Wang LG
    Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Downstream effects of a hydroelectric reservoir on aquatic plant assemblages.
    Bernez I; Haury J; Ferreira MT
    ScientificWorldJournal; 2002 Mar; 2():740-50. PubMed ID: 12806000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anthropogenic Stressors in Upland Rivers: Aquatic Macrophyte Responses. A Case Study from Bulgaria.
    Gecheva G; Pall K; Todorov M; Traykov I; Gribacheva N; Stankova S; Birk S
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow Management to Control Excessive Growth of Macrophytes - An Assessment Based on Habitat Suitability Modeling.
    Ochs K; Rivaes RP; Ferreira T; Egger G
    Front Plant Sci; 2018; 9():356. PubMed ID: 29616067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: Submerged macrophyte distribution influenced by environmental variables.
    Bai G; Zhang Y; Yan P; Yan W; Kong L; Wang L; Wang C; Liu Z; Liu B; Ma J; Zuo J; Li J; Bao J; Xia S; Zhou Q; Xu D; He F; Wu Z
    Water Res; 2020 Nov; 186():116379. PubMed ID: 32911268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community.
    Warfe DM; Barmuta LA
    Oecologia; 2006 Nov; 150(1):141-54. PubMed ID: 16932971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices.
    Camargo JA
    Environ Monit Assess; 2018 Feb; 190(3):173. PubMed ID: 29480431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating river hydromorphology and water quality into ecological status modelling by artificial neural networks.
    Gebler D; Wiegleb G; Szoszkiewicz K
    Water Res; 2018 Aug; 139():395-405. PubMed ID: 29673938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological traits of submerged macrophytes reveal specific positive feedbacks to water clarity in freshwater ecosystems.
    Su H; Chen J; Wu Y; Chen J; Guo X; Yan Z; Tian D; Fang J; Xie P
    Sci Total Environ; 2019 Sep; 684():578-586. PubMed ID: 31158621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.