BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1864497)

  • 1. What are the principal enzymes oxidizing the xenobiotics in plants: cytochromes P-450 or peroxidases? (A hypothesis).
    Stiborová M; Anzenbacher P
    Gen Physiol Biophys; 1991 Apr; 10(2):209-16. PubMed ID: 1864497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of plant cytochrome P-450 and NADPH: cytochrome P-450 reductase from tulip bulbs (Tulipa fosteriana L.) oxidizing xenobiotics.
    Hansíková H; Frei E; Anzenbacher P; Stiborová M
    Gen Physiol Biophys; 1994 Apr; 13(2):149-69. PubMed ID: 7806070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biochemical mechanisms of prostaglandin synthetase co-oxidation of xenobiotics (review)].
    Golovenko NIa; Galkin BN
    Vopr Med Khim; 1986; 32(3):9-15. PubMed ID: 3088836
    [No Abstract]   [Full Text] [Related]  

  • 4. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons.
    Shimada T; Martin MV; Pruess-Schwartz D; Marnett LJ; Guengerich FP
    Cancer Res; 1989 Nov; 49(22):6304-12. PubMed ID: 2509067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study.
    Stiborová M; Schmeiser HH; Frei E
    Phytochemistry; 2000 Jun; 54(4):353-62. PubMed ID: 10897475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs.
    Shimada T; Yamazaki H; Mimura M; Wakamiya N; Ueng YF; Guengerich FP; Inui Y
    Drug Metab Dispos; 1996 May; 24(5):515-22. PubMed ID: 8723730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic oxidation of xenobiotic chemicals.
    Guengerich FP
    Crit Rev Biochem Mol Biol; 1990; 25(2):97-153. PubMed ID: 2183970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic toxicants and plants.
    Korte F; Kvesitadze G; Ugrekhelidze D; Gordeziani M; Khatisashvili G; Buadze O; Zaalishvili G; Coulston F
    Ecotoxicol Environ Saf; 2000 Sep; 47(1):1-26. PubMed ID: 10993699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes.
    Testa B; Krämer SD
    Chem Biodivers; 2007 Mar; 4(3):257-405. PubMed ID: 17372942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenic activation of xenobiotics by plant enzymes.
    Sandermann H
    Mutat Res; 1988 Feb; 197(2):183-94. PubMed ID: 3277039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant monooxygenases: participation in xenobiotic oxidation.
    Khatisashvili G; Gordeziani M; Kvesitadze G; Korte F
    Ecotoxicol Environ Saf; 1997 Mar; 36(2):118-22. PubMed ID: 9126428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of human cytochrome P450-catalyzed oxidations of xenobiotics and procarcinogens by synthetic organoselenium compounds.
    Shimada T; El-Bayoumy K; Upadhyaya P; Sutter TR; Guengerich FP; Yamazaki H
    Cancer Res; 1997 Nov; 57(21):4757-64. PubMed ID: 9354437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenobiotic-metabolizing enzymes and benzo[a]pyrene metabolism in the benzo[a]pyrene-sensitive mutant strain of Drosophila simulans.
    Fuchs SYu ; Spiegelman VS; Safaev RD; Belitsky GA
    Mutat Res; 1992 Oct; 269(2):185-91. PubMed ID: 1383701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ localization and distribution of xenobiotic-activating enzymes and aryl hydrocarbon hydroxylase activity in lungs of untreated rats.
    Voigt JM; Kawabata TT; Burke JP; Martin MV; Guengerich FP; Baron J
    Mol Pharmacol; 1990 Feb; 37(2):182-91. PubMed ID: 2106064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and regional expression of a CYP3A-like protein in channel catfish intestine.
    James MO; Lou Z; Rowland-Faux L; Celander MC
    Aquat Toxicol; 2005 May; 72(4):361-71. PubMed ID: 15848255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.
    Skarydová L; Wsól V
    Drug Metab Rev; 2012 May; 44(2):173-91. PubMed ID: 22181347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatocytes: the powerhouse of biotransformation.
    Sevior DK; Pelkonen O; Ahokas JT
    Int J Biochem Cell Biol; 2012 Feb; 44(2):257-61. PubMed ID: 22123318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic activation of environmental chemicals by microsomal enzymes of higher plants.
    Higashi K
    Mutat Res; 1988 Feb; 197(2):273-88. PubMed ID: 3277043
    [No Abstract]   [Full Text] [Related]  

  • 19. Cytochrome P450-dependent oxidation and glutathione conjugation of xenobiotics in alloxan-induced diabetic rat.
    Gupta RR; Agrawal CG; Shukla GS; Ali B
    Res Commun Mol Pathol Pharmacol; 1997 Nov; 98(2):231-6. PubMed ID: 9467831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidases: a role in the metabolism and side effects of drugs.
    Tafazoli S; O'Brien PJ
    Drug Discov Today; 2005 May; 10(9):617-25. PubMed ID: 15894226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.