These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 18645032)
1. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Ackerman ME; Pawlowski D; Wittrup KD Mol Cancer Ther; 2008 Jul; 7(7):2233-40. PubMed ID: 18645032 [TBL] [Abstract][Full Text] [Related]
2. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Graff CP; Wittrup KD Cancer Res; 2003 Mar; 63(6):1288-96. PubMed ID: 12649189 [TBL] [Abstract][Full Text] [Related]
3. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Thurber GM; Wittrup KD Cancer Res; 2008 May; 68(9):3334-41. PubMed ID: 18451160 [TBL] [Abstract][Full Text] [Related]
4. The effect of antigen concentration, antibody valency and size, and tumor architecture on antibody binding in multicell spheroids. Langmuir VK; McGann JK; Buchegger F; Sutherland RM Int J Rad Appl Instrum B; 1991; 18(7):753-64. PubMed ID: 1787084 [TBL] [Abstract][Full Text] [Related]
5. Uptake, penetration, and binding of monoclonal antibodies with increasing affinity in human osteosarcoma multicell spheroids. Hjelstuen MH; Rasch-Halvorsen K; Bruland O; De L Davies C Anticancer Res; 1998; 18(5A):3153-61. PubMed ID: 9858878 [TBL] [Abstract][Full Text] [Related]
6. A quantitative analysis of tumor specific monoclonal antibody uptake by human melanoma xenografts: effects of antibody immunological properties and tumor antigen expression levels. Shockley TR; Lin K; Sung C; Nagy JA; Tompkins RG; Dedrick RL; Dvorak HF; Yarmush ML Cancer Res; 1992 Jan; 52(2):357-66. PubMed ID: 1728407 [TBL] [Abstract][Full Text] [Related]
8. Effect of polarity and differentiation on antibody localization in multicellular tumour spheroid and xenograft models and its potential importance for in vivo immunotargeting. Pervez S; Kirkland SC; Epenetos AA; Mooi WJ; Evans DJ; Krausz T Int J Cancer; 1989 Nov; 44(5):940-7. PubMed ID: 2583872 [TBL] [Abstract][Full Text] [Related]
9. Role of Endocytosis in Nanoparticle Penetration of 3D Pancreatic Cancer Spheroids. Durymanov M; Kroll C; Permyakova A; Reineke J Mol Pharm; 2019 Mar; 16(3):1074-1082. PubMed ID: 30707590 [TBL] [Abstract][Full Text] [Related]
10. The selection of antibodies for targeted therapy of small-cell lung cancer (SCLC) using a human tumour spheroid model to compare the uptake of cluster 1 and cluster w4 antibodies. Olabiran Y; Ledermann JA; Marston NJ; Boxer GM; Hicks R; Souhami RL; Spiro SG; Stahel RA Br J Cancer; 1994 Feb; 69(2):247-52. PubMed ID: 8297722 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of anti-carcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability. Schmidt MM; Thurber GM; Wittrup KD Cancer Immunol Immunother; 2008 Dec; 57(12):1879-90. PubMed ID: 18408925 [TBL] [Abstract][Full Text] [Related]
12. Rapid and specific targeting of monoclonal antibody A33 to a colon cancer xenograft in nude mice. Barendswaard EC; Scott AM; Divgi CR; Williams C; Coplan K; Riedel E; Yao TJ; Gansow OA; Finn RD; Larson SM; Old LJ; Welt S Int J Oncol; 1998 Jan; 12(1):45-53. PubMed ID: 9454885 [TBL] [Abstract][Full Text] [Related]
13. Predicted and observed effects of antibody affinity and antigen density on monoclonal antibody uptake in solid tumors. Sung C; Shockley TR; Morrison PF; Dvorak HF; Yarmush ML; Dedrick RL Cancer Res; 1992 Jan; 52(2):377-84. PubMed ID: 1728409 [TBL] [Abstract][Full Text] [Related]
14. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Shockley TR; Lin K; Nagy JA; Tompkins RG; Yarmush ML; Dvorak HF Cancer Res; 1992 Jan; 52(2):367-76. PubMed ID: 1728408 [TBL] [Abstract][Full Text] [Related]
15. Internalizing cancer antibodies from phage libraries selected on tumor cells and yeast-displayed tumor antigens. Zhou Y; Zou H; Zhang S; Marks JD J Mol Biol; 2010 Nov; 404(1):88-99. PubMed ID: 20851130 [TBL] [Abstract][Full Text] [Related]
16. Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Lazzari G; Vinciguerra D; Balasso A; Nicolas V; Goudin N; Garfa-Traore M; Fehér A; Dinnyés A; Nicolas J; Couvreur P; Mura S Eur J Pharm Biopharm; 2019 Sep; 142():195-203. PubMed ID: 31228557 [TBL] [Abstract][Full Text] [Related]
17. Response of LNCaP spheroids after treatment with an alpha-particle emitter (213Bi)-labeled anti-prostate-specific membrane antigen antibody (J591). Ballangrud AM; Yang WH; Charlton DE; McDevitt MR; Hamacher KA; Panageas KS; Ma D; Bander NH; Scheinberg DA; Sgouros G Cancer Res; 2001 Mar; 61(5):2008-14. PubMed ID: 11280760 [TBL] [Abstract][Full Text] [Related]
18. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Juweid M; Neumann R; Paik C; Perez-Bacete MJ; Sato J; van Osdol W; Weinstein JN Cancer Res; 1992 Oct; 52(19):5144-53. PubMed ID: 1327501 [TBL] [Abstract][Full Text] [Related]
19. Penetration and binding of monoclonal antibody in human osteosarcoma multicell spheroids. Comparison of confocal laser scanning microscopy and autoradiography. Hjelstuen MH; Rasch-Halvorsen K; Brekken C; Bruland O; de L Davies C Acta Oncol; 1996; 35(3):273-9. PubMed ID: 8679256 [TBL] [Abstract][Full Text] [Related]
20. High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Willuda J; Honegger A; Waibel R; Schubiger PA; Stahel R; Zangemeister-Wittke U; Plückthun A Cancer Res; 1999 Nov; 59(22):5758-67. PubMed ID: 10582696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]