These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18645352)

  • 1. Reliable suction detection for patients with rotary blood pumps.
    Mason DG; Hilton AK; Salamonsen RF
    ASAIO J; 2008; 54(4):359-66. PubMed ID: 18645352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced suction detection for an axial flow pump.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2006 Sep; 30(9):665-70. PubMed ID: 16934094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of suction detection during different pumping states in an implantable rotary blood pump.
    Ng SC; Lim E; Mason DG; Avolio AP; Lovell NH
    Artif Organs; 2013 Aug; 37(8):E145-54. PubMed ID: 23635073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suction events during left ventricular support and ventricular arrhythmias.
    Vollkron M; Voitl P; Ta J; Wieselthaler G; Schima H
    J Heart Lung Transplant; 2007 Aug; 26(8):819-25. PubMed ID: 17692786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of physiologically significant pumping states in an implantable rotary blood pump: effects of cardiac rhythm disturbances.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2007 Jun; 31(6):476-9. PubMed ID: 17537061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of a compliant inflow cannula reservoir to reduce suction events with extracorporeal rotary ventricular assist device support.
    Gregory SD; Timms D; Gaddum NR; McDonald C; Pearcy MJ; Fraser JF
    Artif Organs; 2011 Aug; 35(8):765-72. PubMed ID: 21843291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro evaluation of physiological controller response of rotary blood pumps to changes in patient state.
    Pauls JP; Gregory SD; Stevens M; Tansley G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():294-7. PubMed ID: 25569955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.
    Gregory SD; Schummy E; Pearcy M; Pauls JP; Tansley G; Fraser JF; Timms D
    Artif Organs; 2015 Feb; 39(2):102-9. PubMed ID: 25041754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of physiologically significant pumping states in an implantable rotary blood pump: patient trial results.
    Karantonis DM; Mason DG; Salamonsen RF; Ayre PJ; Cloherty SL; Lovell NH
    ASAIO J; 2007; 53(5):617-22. PubMed ID: 17885336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preload sensitivity of the Jarvik 2000 and HeartMate II left ventricular assist devices.
    Khalil HA; Cohn WE; Metcalfe RW; Frazier OH
    ASAIO J; 2008; 54(3):245-8. PubMed ID: 18496273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of extremum seeking control to turbodynamic blood pumps.
    Gwak KW
    ASAIO J; 2007; 53(4):403-9. PubMed ID: 17667222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: an in vitro study.
    Stöcklmayer C; Dorffner G; Schmidt C; Schima H
    Artif Organs; 1995 Jul; 19(7):719-24. PubMed ID: 8572982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.