These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 18645433)
1. Methods of antibiotic instillation in porous orbital implants. Badilla J; Dolman PJ Ophthalmic Plast Reconstr Surg; 2008; 24(4):287-9. PubMed ID: 18645433 [TBL] [Abstract][Full Text] [Related]
2. Comparison of complication rates of porous anophthalmic orbital implants. Ramey N; Gupta D; Price K; Husain A; Richard M; Woodward J Ophthalmic Surg Lasers Imaging; 2011; 42(5):434-40. PubMed ID: 21899247 [TBL] [Abstract][Full Text] [Related]
3. Proliferation of human fibroblasts in vitro after exposure to orbital implants. Mawn LA; Jordan DR; Gilberg S Can J Ophthalmol; 2001 Aug; 36(5):245-51. PubMed ID: 11548140 [TBL] [Abstract][Full Text] [Related]
4. Fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants wrapped with acellular dermis. Thakker MM; Fay AM; Pieroth L; Rubin PA Ophthalmic Plast Reconstr Surg; 2004 Sep; 20(5):368-73. PubMed ID: 15377904 [TBL] [Abstract][Full Text] [Related]
5. Orbital implants insertion to improve ocular prostheses motility. Goiato MC; Haddad MF; dos Santos DM; Pesqueira AA; Ribeiro Pdo P; Moreno A J Craniofac Surg; 2010 May; 21(3):870-5. PubMed ID: 20485072 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the exposure rate of wrapped hydroxyapatite (Bio-Eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Tabatabaee Z; Mazloumi M; Rajabi MT; Khalilzadeh O; Kassaee A; Moghimi S; Eftekhar H; Goldberg RA Ophthalmic Plast Reconstr Surg; 2011; 27(2):114-8. PubMed ID: 20829725 [TBL] [Abstract][Full Text] [Related]
7. The bioceramic orbital implant: a new generation of porous implants. Jordan DR; Mawn LA; Brownstein S; McEachren TM; Gilberg SM; Hill V; Grahovac SZ; Adenis JP Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):347-55. PubMed ID: 11021384 [TBL] [Abstract][Full Text] [Related]
8. Porous orbital implants in enucleation: a systematic review. Chalasani R; Poole-Warren L; Conway RM; Ben-Nissan B Surv Ophthalmol; 2007; 52(2):145-55. PubMed ID: 17355854 [TBL] [Abstract][Full Text] [Related]
9. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction. Lee H; Baek S J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649 [TBL] [Abstract][Full Text] [Related]
10. Behavior of various orbital implants under axial compression. Jordan DR; Ahuja N; Gilberg S; Bouchard R Ophthalmic Plast Reconstr Surg; 2005 May; 21(3):225-9. PubMed ID: 15942500 [TBL] [Abstract][Full Text] [Related]
11. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants. Chuo JY; Dolman PJ; Ng TL; Buffam FV; White VA Ophthalmology; 2009 Feb; 116(2):349-54. PubMed ID: 19091412 [TBL] [Abstract][Full Text] [Related]
12. Effect of sucralfate and basic fibroblast growth factor on fibrovascular ingrowth into hydroxyapatite and porous polyethylene alloplastic implants using a novel rabbit model. Rubin PA; Nicaeus TE; Warner MA; Remulla HD Ophthalmic Plast Reconstr Surg; 1997 Mar; 13(1):8-17. PubMed ID: 9076777 [TBL] [Abstract][Full Text] [Related]
13. Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Jordan DR; Gilberg S; Bawazeer A Ophthalmic Plast Reconstr Surg; 2004 Jan; 20(1):69-74. PubMed ID: 14752315 [TBL] [Abstract][Full Text] [Related]
14. Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy. Choi S; Lee SJ; Shin JH; Cheong Y; Lee HJ; Paek JH; Kim JS; Jin KH; Park HK Scanning; 2011; 33(4):211-21. PubMed ID: 21538394 [TBL] [Abstract][Full Text] [Related]
15. Effect of basic fibroblast growth factor on fibrovascular ingrowth into porous polyethylene anophthalmic socket implants. Park WC; Han SK; Kim NJ; Chung TY; Khwarg SI Korean J Ophthalmol; 2005 Mar; 19(1):1-8. PubMed ID: 15929480 [TBL] [Abstract][Full Text] [Related]
16. Fibrovascular ingrowth in porous ocular implants: the effect of material composition, porosity, growth factors, and coatings. Bigham WJ; Stanley P; Cahill JM; Curran RW; Perry AC Ophthalmic Plast Reconstr Surg; 1999 Sep; 15(5):317-25. PubMed ID: 10511211 [TBL] [Abstract][Full Text] [Related]
17. Porous and nonporous orbital implants for treating the anophthalmic socket: A meta-analysis of case series studies. Schellini S; Jorge E; Sousa R; Burroughs J; El-Dib R Orbit; 2016; 35(2):78-86. PubMed ID: 26928263 [TBL] [Abstract][Full Text] [Related]
18. Scanning electron microscopic examination of porous orbital implants. Mawn LA; Jordan DR; Gilberg S Can J Ophthalmol; 1998 Jun; 33(4):203-9. PubMed ID: 9660003 [TBL] [Abstract][Full Text] [Related]
19. Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model. Kalwerisky K; Mihora L; Czyz CN; Foster JA; Holck DE Ophthalmic Plast Reconstr Surg; 2013; 29(5):350-6. PubMed ID: 23811596 [TBL] [Abstract][Full Text] [Related]
20. Porous polyethylene implant fibrovascularization rate is affected by tissue wrapping, agarose coating, and insertion site. Soparkar CN; Wong JF; Patrinely JR; Davidson JK; Appling D Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):330-6. PubMed ID: 11021381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]