BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18645640)

  • 1. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G.
    Cid CC; Riu J; Maroto A; Rius FX
    Analyst; 2008 Aug; 133(8):1005-8. PubMed ID: 18645640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensors based on carbon nanotube-network field-effect transistors.
    Cid CC; Riu J; Maroto A; Rius FX
    Methods Mol Biol; 2010; 625():213-25. PubMed ID: 20422393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-alpha.
    Sánchez-Acevedo ZC; Riu J; Rius FX
    Biosens Bioelectron; 2009 May; 24(9):2842-6. PubMed ID: 19303279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors.
    Villamizar RA; Maroto A; Rius FX; Inza I; Figueras MJ
    Biosens Bioelectron; 2008 Oct; 24(2):279-83. PubMed ID: 18495470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.
    Byon HR; Choi HC
    J Am Chem Soc; 2006 Feb; 128(7):2188-9. PubMed ID: 16478153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
    Gui EL; Li LJ; Zhang K; Xu Y; Dong X; Ho X; Lee PS; Kasim J; Shen ZX; Rogers JA; Mhaisalkar SG
    J Am Chem Soc; 2007 Nov; 129(46):14427-32. PubMed ID: 17973383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.
    Boussaad S; Diner BA; Fan J
    J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments.
    Kim JP; Lee BY; Hong S; Sim SJ
    Anal Biochem; 2008 Oct; 381(2):193-8. PubMed ID: 18640089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of tumor markers using single-walled carbon nanotube field effect transistors.
    Park DW; Kim YH; Kim BS; So HM; Won K; Lee JO; Kong KJ; Chang H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3499-502. PubMed ID: 17252798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor.
    Lee SH; Jin HJ; Song HS; Hong S; Park TH
    J Biotechnol; 2012 Feb; 157(4):467-72. PubMed ID: 21945089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors.
    Dastagir T; Forzani ES; Zhang R; Amlani I; Nagahara LA; Tsui R; Tao N
    Analyst; 2007 Aug; 132(8):738-40. PubMed ID: 17646871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Bioelectronic super-taster" device based on taste receptor-carbon nanotube hybrid structures.
    Kim TH; Song HS; Jin HJ; Lee SH; Namgung S; Kim UK; Park TH; Hong S
    Lab Chip; 2011 Jul; 11(13):2262-7. PubMed ID: 21547310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-defect, purified, narrowly (n,m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41.
    Chen Y; Wei L; Wang B; Lim S; Ciuparu D; Zheng M; Chen J; Zoican C; Yang Y; Haller GL; Pfefferle LD
    ACS Nano; 2007 Nov; 1(4):327-36. PubMed ID: 19206684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode.
    Ishige Y; Shimoda M; Kamahori M
    Biosens Bioelectron; 2009 Jan; 24(5):1096-102. PubMed ID: 18672358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient synthesis of individual single-walled carbon nanotube by water-based catalyst with poly(vinylpyrrolidone).
    Jeong SY; Jeon SH; Han GH; An KH; Bae DJ; Lim SC; Hwang HR; Han CS; Yun M; Lee YH
    J Nanosci Nanotechnol; 2008 Jan; 8(1):329-34. PubMed ID: 18468078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors.
    Aïssa B; El Khakani MA
    Nanotechnology; 2009 Apr; 20(17):175203. PubMed ID: 19420587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of single mismatched DNA using MutS-immobilized carbon nanotube field effect transistor devices.
    Kim S; Kim TG; Byon HR; Shin HJ; Ban C; Choi HC
    J Phys Chem B; 2009 Sep; 113(36):12164-8. PubMed ID: 19685907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET.
    Asif MH; Nur O; Willander M; Danielsson B
    Biosens Bioelectron; 2009 Jul; 24(11):3379-82. PubMed ID: 19442511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.