These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18646202)

  • 1. Cytocompatibility of a free machining titanium alloy containing lanthanum.
    Feyerabend F; Siemers C; Willumeit R; Rösler J
    J Biomed Mater Res A; 2009 Sep; 90(3):931-9. PubMed ID: 18646202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts.
    Zhang YM; Chai F; Hornez JC; Li CL; Zhao YM; Traisnel M; Hildebrand HF
    Biomed Mater; 2009 Feb; 4(1):015004. PubMed ID: 18981540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines.
    Feyerabend F; Fischer J; Holtz J; Witte F; Willumeit R; Drücker H; Vogt C; Hort N
    Acta Biomater; 2010 May; 6(5):1834-42. PubMed ID: 19800429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants.
    Bedi RS; Beving DE; Zanello LP; Yan Y
    Acta Biomater; 2009 Oct; 5(8):3265-71. PubMed ID: 19433139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys.
    Yeung KW; Poon RW; Liu XY; Ho JP; Chung CY; Chu PK; Lu WW; Chan D; Cheung KM
    J Biomed Mater Res A; 2005 Nov; 75(2):256-67. PubMed ID: 16078209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.
    Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F
    Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of beta-stabilizing elements of titanium alloys.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of the response of osteoblast- and macrophage-like cells to particles of Ni-free Fe-base alloys.
    Ciapetti G; González-Carrasco JL; Savarino L; Montealegre MA; Pagani S; Baldini N
    Biomaterials; 2005 Mar; 26(8):849-59. PubMed ID: 15353196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.
    Gordin DM; Ion R; Vasilescu C; Drob SI; Cimpean A; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():362-70. PubMed ID: 25280716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biocompatibility of equal channel angular processed (ECAP) titanium.
    Kim TN; Balakrishnan A; Lee BC; Kim WS; Smetana K; Park JK; Panigrahi BB
    Biomed Mater; 2007 Sep; 2(3):S117-20. PubMed ID: 18458454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus.
    Guo Y; Chen D; Lu W; Jia Y; Wang L; Zhang X
    Biomed Mater; 2013 Oct; 8(5):055004. PubMed ID: 24002775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium.
    Mabilleau G; Bourdon S; Joly-Guillou ML; Filmon R; Baslé MF; Chappard D
    Acta Biomater; 2006 Jan; 2(1):121-9. PubMed ID: 16701867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.