These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18646733)

  • 1. Print-and-peel fabrication of microelectrodes.
    Hong C; Bao D; Thomas MS; Clift JM; Vullev VI
    Langmuir; 2008 Aug; 24(16):8439-42. PubMed ID: 18646733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlithographic fabrication of microfluidic devices.
    Vullev VI; Wan J; Heinrich V; Landsman P; Bower PE; Xia B; Millare B; Jones G
    J Am Chem Soc; 2006 Dec; 128(50):16062-72. PubMed ID: 17165759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Print-and-peel fabricated passive micromixers.
    Thomas MS; Clift JM; Millare B; Vullev VI
    Langmuir; 2010 Feb; 26(4):2951-7. PubMed ID: 20000554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI).
    Hood SJ; Kampouris DK; Kadara RO; Jenkinson N; del Campo FJ; Muñoz FX; Banks CE
    Analyst; 2009 Nov; 134(11):2301-5. PubMed ID: 19838419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the capacitance of solid-state potentiometric sensors: An electrochemical time-of-flight method.
    Elsen HA; Slowinska K; Hull E; Majda M
    Anal Chem; 2006 Sep; 78(18):6356-63. PubMed ID: 16970309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays.
    Cruz D; Chang JP; Fico M; Guymon AJ; Austin DE; Blain MG
    Rev Sci Instrum; 2007 Jan; 78(1):015107. PubMed ID: 17503946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microelectrode arrays with overlapped diffusion layers as electroanalytical detectors: theory and basic applications.
    Tomčík P
    Sensors (Basel); 2013 Oct; 13(10):13659-84. PubMed ID: 24152927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition.
    Simm AO; Banks CE; Ward-Jones S; Davies TJ; Lawrence NS; Jones TG; Jiang L; Compton RG
    Analyst; 2005 Sep; 130(9):1303-11. PubMed ID: 16096678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectrode arrays for electrochemistry: approaches to fabrication.
    Huang XJ; O'Mahony AM; Compton RG
    Small; 2009 Apr; 5(7):776-88. PubMed ID: 19340821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes.
    Domínguez-Renedo O; Ruiz-Espelt L; García-Astorgano N; Arcos-Martínez MJ
    Talanta; 2008 Aug; 76(4):854-8. PubMed ID: 18656669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation.
    Neugebauer S; Evans SR; Aguilar ZP; Mosbach M; Fritsch I; Schuhmann W
    Anal Chem; 2004 Jan; 76(2):458-63. PubMed ID: 14719897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical chemical sensors from chemically derived graphene.
    Fowler JD; Allen MJ; Tung VC; Yang Y; Kaner RB; Weiller BH
    ACS Nano; 2009 Feb; 3(2):301-6. PubMed ID: 19236064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free DNA sensor based on organic thin film transistors.
    Yan F; Mok SM; Yu J; Chan HL; Yang M
    Biosens Bioelectron; 2009 Jan; 24(5):1241-5. PubMed ID: 18771910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General concept of high-performance amperometric detector for microfluidic (bio)analytical chips.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2008 Jul; 80(13):4976-85. PubMed ID: 18470995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of nonplanar microelectrode array circuits for use in arthroscopic diagnosis of cartilage diseases.
    Quenneville E; Binette JS; Garon M; Légaré A; Meunier M; Buschmann MD
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2164-73. PubMed ID: 15605864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical sensors.
    Bakker E
    Anal Chem; 2004 Jun; 76(12):3285-98. PubMed ID: 15193109
    [No Abstract]   [Full Text] [Related]  

  • 20. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach.
    Svegl IG; Bele M; Ogorevc B
    Anal Chim Acta; 2008 Nov; 628(2):173-80. PubMed ID: 18929005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.