These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18646830)

  • 1. sigma- and pi-defects at graphene nanoribbon edges: building spin filters.
    Martins TB; da Silva AJ; Miwa RH; Fazzio A
    Nano Lett; 2008 Aug; 8(8):2293-8. PubMed ID: 18646830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-dependent electronic conduction along zigzag graphene nanoribbons bearing adsorbed Ni and Fe nanostructures.
    García-Fuente A; Gallego LJ; Vega A
    J Phys Condens Matter; 2014 Apr; 26(16):165302. PubMed ID: 24691196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
    Tawfik SA; Cui XY; Ringer SP; Stampfl C
    Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon.
    Kang D; Wang B; Xia C; Li H
    Nanoscale Res Lett; 2017 Dec; 12(1):357. PubMed ID: 28525951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin transport in be edge-doped graphene nanoribbon.
    Wu TT; Wang XF; Jiang Y; Zhou L
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6467-71. PubMed ID: 22962766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-polarized electrical transport properties of organic radicals in presence of zigzag-graphene nanoribbon leads.
    Sarkar S; Kumar A; Cho D
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38265086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and transport properties of boron-doped graphene nanoribbons.
    Martins TB; Miwa RH; da Silva AJ; Fazzio A
    Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.
    Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF
    J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters.
    Magno M; Hagelberg F
    J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges.
    Bilić A; Sanvito S
    J Chem Phys; 2013 Jan; 138(1):014704. PubMed ID: 23298054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular spintronics: destructive quantum interference controlled by a gate.
    Saraiva-Souza A; Smeu M; Zhang L; Souza Filho AG; Guo H; Ratner MA
    J Am Chem Soc; 2014 Oct; 136(42):15065-71. PubMed ID: 25264567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nonmagnetic impurities on the spin transport property of a graphene nanoribbon device.
    Park J; Yang H; Park KS; Lee EK
    J Chem Phys; 2009 Jun; 130(21):214103. PubMed ID: 19508052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes.
    Zhu L; Zou F; Gao JH; Fu YS; Gao GY; Fu HH; Wu MH; Lü JT; Yao KL
    Nanotechnology; 2015 Aug; 26(31):315201. PubMed ID: 26180074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons.
    Xu Y; Wang BJ; Ke SH; Yang W; Alzahrani AZ
    J Chem Phys; 2012 Sep; 137(10):104107. PubMed ID: 22979850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire.
    Yu H; Shang Y; Hu Y; Pei L; Zhang G
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.