BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 18646834)

  • 21. An efficient reagent for the phosphorylation of deoxyribonucleosides, DNA oligonucleotides, and their thermolytic analogues.
    Ausín C; Grajkowski A; Cieślak J; Beaucage SL
    Org Lett; 2005 Sep; 7(19):4201-4. PubMed ID: 16146387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale synthesis of triple helix forming oligonucleotides using a controlled-pore glass support.
    Murphy M; Rieger M; Jayaraman K
    Biotechniques; 1993 Dec; 15(6):1004-6, 1008, 1010. PubMed ID: 8292331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent attachment of hybridizable oligonucleotides to glass supports.
    Joos B; Kuster H; Cone R
    Anal Biochem; 1997 Apr; 247(1):96-101. PubMed ID: 9126377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alpha-oligonucleotides with anionic phosphodiester and cationic phosphoramidate linkages enhanced stability of DNA triple helix.
    Ehrenmann F; Vasseur JJ; Debart F
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):797-9. PubMed ID: 11563118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-Independent triplex formation: hairpin DNA containing isoguanine or 9-deaza-9-propynylguanine in place of protonated cytosine.
    Seela F; Shaikh KI
    Org Biomol Chem; 2006 Nov; 4(21):3993-4004. PubMed ID: 17047881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA with branched internal side chains: synthesis of 5-tripropargylamine-dU and conjugation by an azide-alkyne double click reaction.
    Sirivolu VR; Chittepu P; Seela F
    Chembiochem; 2008 Sep; 9(14):2305-16. PubMed ID: 18780386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel catechol-based universal support for oligonucleotide synthesis.
    Anderson KM; Jaquinod L; Jensen MA; Ngo N; Davis RW
    J Org Chem; 2007 Dec; 72(26):9875-80. PubMed ID: 18044913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne--azide "click" reaction.
    Seela F; Sirivolu VR; Chittepu P
    Bioconjug Chem; 2008 Jan; 19(1):211-24. PubMed ID: 18020404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stepwise synthesis of oligonucleotide-peptide conjugates containing guanidinium and lipophilic groups in their 3'-termini.
    Grijalvo S; Terrazas M; Aviñó A; Eritja R
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2144-7. PubMed ID: 20206515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural arrangement of DNA constrained by a cross-linker.
    Endo M; Majima T
    Org Biomol Chem; 2005 Oct; 3(19):3476-8. PubMed ID: 16172682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of intrachain 4'-C-azidomethylthymidine for preparation of oligodeoxyribonucleotide conjugates by click chemistry in solution and on a solid support.
    Kiviniemi A; Virta P; Lönnberg H
    Bioconjug Chem; 2008 Aug; 19(8):1726-34. PubMed ID: 18671421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of monomers bearing at the 2'-position cyanomethoxycarbonyl group for phosphoramidite oligonucleotide synthesis.
    Vasilyeva SV; Abramova TV; Silnikov VN
    Nucleosides Nucleotides Nucleic Acids; 2004 Oct; 23(6-7):993-8. PubMed ID: 15560092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phototriggered DNA phosphoramidate ligation in a tandem 5'-amine deprotection/3'-imidazole activated phosphate coupling reaction.
    Cape JL; Edson JB; Spencer LP; DeClue MS; Ziock HJ; Maurer S; Rasmussen S; Monnard PA; Boncella JM
    Bioconjug Chem; 2012 Oct; 23(10):2014-9. PubMed ID: 22985338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers.
    Eisenhuth R; Richert C
    J Org Chem; 2009 Jan; 74(1):26-37. PubMed ID: 19053612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel approach for the solid phase synthesis of DNA-peptide conjugates.
    Kubo T; Dubey K; Fujii M
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1321-4. PubMed ID: 11563013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct, solid phase assembly of dihydropyrroloindole peptides with conjugated oligonucleotides.
    Lukhtanov EA; Kutyavin IV; Meyer RB
    Bioconjug Chem; 1996; 7(5):564-7. PubMed ID: 8889018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient synthesis of oligonucleotide conjugates on solid-support using an (aminoethoxycarbonyl)aminohexyl group for 5'-terminal modification.
    Kojima N; Takebayashi T; Mikami A; Ohtsuka E; Komatsu Y
    Bioorg Med Chem Lett; 2009 Apr; 19(8):2144-7. PubMed ID: 19303292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.
    Hamma T; Miller PS
    Bioconjug Chem; 2003; 14(2):320-30. PubMed ID: 12643742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5' end fluorescent labelling of oligonucleotides with riboflavin-derived phosphitylating reagent.
    Mielewczyk S; Wieckowska D; Krzymańska-Olejnik E; Gdaniec Z; Adamiak RW
    Acta Biochim Pol; 1989; 36(3-4):225-33. PubMed ID: 2485999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycomimetics as decorating motifs for oligonucleotides: solid-phase synthesis, stability, and hybridization properties of carbopeptoid-oligonucleotide conjugates.
    D'Onofrio J; de Champdoré M; De Napoli L; Montesarchio D; Di Fabio G
    Bioconjug Chem; 2005; 16(5):1299-309. PubMed ID: 16173811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.