These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18646983)

  • 1. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz.
    Ravicz ME; Cooper NP; Rosowski JJ
    J Acoust Soc Am; 2008 Jul; 124(1):363-80. PubMed ID: 18646983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of wide-band middle ear transmission in the Mongolian gerbil.
    Overstreet EH; Ruggero MA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):261-70. PubMed ID: 11831800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of tympanic membrane perforation on middle ear transmission in gerbil.
    Stomackin G; Kidd S; Jung TT; Martin GK; Dong W
    Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2013 Oct; 134(4):2852-65. PubMed ID: 24116422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil.
    de la Rochefoucauld O; Decraemer WF; Khanna SM; Olson ES
    J Assoc Res Otolaryngol; 2008 Jun; 9(2):161-77. PubMed ID: 18459001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-domain and frequency-domain effects of tensor tympani contraction on middle ear sound transmission in gerbil.
    Gallagher L; Diop M; Olson ES
    Hear Res; 2021 Jun; 405():108231. PubMed ID: 33915400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ossicular motion related to middle ear transmission delay in gerbil.
    de La Rochefoucauld O; Kachroo P; Olson ES
    Hear Res; 2010 Dec; 270(1-2):158-72. PubMed ID: 20696229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I; Farahmandi TS; Röösli C
    Hear Res; 2020 Sep; 395():108041. PubMed ID: 32810722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency sensitivity of the mature gerbil cochlea and its development.
    Overstreet EH; Richter CP; Temchin AN; Cheatham MA; Ruggero MA
    Audiol Neurootol; 2003; 8(1):19-27. PubMed ID: 12566689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic input impedance of the stapes and cochlea in human temporal bones.
    Merchant SN; Ravicz ME; Rosowski JJ
    Hear Res; 1996 Aug; 97(1-2):30-45. PubMed ID: 8844184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human middle-ear sound transfer function and cochlear input impedance.
    Aibara R; Welsh JT; Puria S; Goode RL
    Hear Res; 2001 Feb; 152(1-2):100-9. PubMed ID: 11223285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo impedance of the gerbil cochlear partition at auditory frequencies.
    Dong W; Olson ES
    Biophys J; 2009 Sep; 97(5):1233-43. PubMed ID: 19720011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.