These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18647005)
1. Mammalian laryngseal air sacs add variability to the vocal tract impedance: physical and computational modeling. Riede T; Tokuda IT; Munger JB; Thomson SL J Acoust Soc Am; 2008 Jul; 124(1):634-47. PubMed ID: 18647005 [TBL] [Abstract][Full Text] [Related]
2. Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus). Frey R; Gebler A; Fritsch G; Nygrén K; Weissengruber GE J Anat; 2007 Feb; 210(2):131-59. PubMed ID: 17310544 [TBL] [Abstract][Full Text] [Related]
3. Cyclicity of laryngeal cavity resonance due to vocal fold vibration. Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319 [TBL] [Abstract][Full Text] [Related]
4. Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering. Daley M; Goller F J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548 [TBL] [Abstract][Full Text] [Related]
5. Acoustic analysis of primate air sacs and their effect on vocalization. de Boer B J Acoust Soc Am; 2009 Dec; 126(6):3329-43. PubMed ID: 20000947 [TBL] [Abstract][Full Text] [Related]
6. Acoustic roles of the laryngeal cavity in vocal tract resonance. Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318 [TBL] [Abstract][Full Text] [Related]
7. [Structure, occurrence and functional significance of nonlinear phenomena in sounds of terrestrial mammals]. Volodin IA; Volodina EV; Filatova OA Zh Obshch Biol; 2005; 66(4):346-62. PubMed ID: 16212284 [TBL] [Abstract][Full Text] [Related]
8. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system. Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887 [TBL] [Abstract][Full Text] [Related]
9. Savannah roars: The vocal anatomy and the impressive rutting calls of male impala (Aepyceros melampus) - highlighting the acoustic correlates of a mobile larynx. Frey R; Volodin IA; Volodina EV; Efremova KO; Menges V; Portas R; Melzheimer J; Fritsch G; Gerlach C; von Dörnberg K J Anat; 2020 Mar; 236(3):398-424. PubMed ID: 31777085 [TBL] [Abstract][Full Text] [Related]
11. Modeling the role of nonhuman vocal membranes in phonation. Mergell P; Fitch WT; Herzel H J Acoust Soc Am; 1999 Mar; 105(3):2020-8. PubMed ID: 10089619 [TBL] [Abstract][Full Text] [Related]
12. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study. Titze IR; Laukkanen AM Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981 [TBL] [Abstract][Full Text] [Related]
13. A hybrid approach to the computational aeroacoustics of human voice production. Šidlof P; Zörner S; Hüppe A Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479 [TBL] [Abstract][Full Text] [Related]
14. Aerodynamics of the human larynx during vocal fold vibration. Plant RL Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149 [TBL] [Abstract][Full Text] [Related]
15. A bond graph approach to modeling the anuran vocal production system. Kime NM; Ryan MJ; Wilson PS J Acoust Soc Am; 2013 Jun; 133(6):4133-44. PubMed ID: 23742365 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice. Titze IR J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog. Reidenberg JS; Laitman JT Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447 [TBL] [Abstract][Full Text] [Related]
18. Adjustment of the Vocal Tract Shape via Biofeedback: A Case Study. Hoyer P; Graf S J Voice; 2019 Jul; 33(4):482-489. PubMed ID: 29454552 [TBL] [Abstract][Full Text] [Related]
19. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels. Maurer D; Hess M; Gross M Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285 [TBL] [Abstract][Full Text] [Related]
20. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract. Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]