BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 18647014)

  • 1. A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations.
    Zheng L; Carbone IO; Lugovskoy A; Berg BA; Yang W
    J Chem Phys; 2008 Jul; 129(3):034105. PubMed ID: 18647014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential energy space random walks to accelerate molecular dynamics simulations: convergence improvements via an adaptive-length self-healing strategy.
    Zheng L; Yang W
    J Chem Phys; 2008 Jul; 129(1):014105. PubMed ID: 18624468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the simulated scaling based free energy simulations: Adaptive optimization of the scaling parameter intervals.
    Zheng L; Yang W
    J Chem Phys; 2008 Sep; 129(12):124107. PubMed ID: 19045006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the convergence improvement in the metadynamics simulations: a Wang-Landau recursion approach.
    Min D; Liu Y; Carbone I; Yang W
    J Chem Phys; 2007 May; 126(19):194104. PubMed ID: 17523795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.
    Li H; Fajer M; Yang W
    J Chem Phys; 2007 Jan; 126(2):024106. PubMed ID: 17228942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.
    Zheng L; Chen M; Yang W
    J Chem Phys; 2009 Jun; 130(23):234105. PubMed ID: 19548709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic approach to improve "alchemical" free energy calculation in rugged energy surface.
    Min D; Li H; Li G; Bitetti-Putzer R; Yang W
    J Chem Phys; 2007 Apr; 126(14):144109. PubMed ID: 17444703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping electron paramagnetic resonance spin label conformations by the simulated scaling method.
    Fajer MI; Li H; Yang W; Fajer PG
    J Am Chem Soc; 2007 Nov; 129(45):13840-6. PubMed ID: 17948993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential energy space random walk via energy space metadynamics method to accelerate molecular dynamics simulations.
    Li H; Min D; Liu Y; Yang W
    J Chem Phys; 2007 Sep; 127(9):094101. PubMed ID: 17824726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate calculations of free-energy differences by the distribution method.
    Wu D
    J Chem Phys; 2008 Jun; 128(22):224105. PubMed ID: 18554004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating flat-histogram methods for potential of mean force calculations.
    Janosi L; Doxastakis M
    J Chem Phys; 2009 Aug; 131(5):054105. PubMed ID: 19673549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method of estimating sampling consistency based on free energy map distance.
    Son WJ; Jang S; Shin S
    J Mol Graph Model; 2008 Oct; 27(3):321-5. PubMed ID: 18619879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation.
    Wu D; Kofke DA
    J Chem Phys; 2005 May; 122(20):204104. PubMed ID: 15945710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2008 Oct; 129(15):155102. PubMed ID: 19045232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized simulated tempering realized on expanded ensembles of non-Boltzmann weights.
    Kim JG; Fukunishi Y; Kidera A; Nakamura H
    J Chem Phys; 2004 Sep; 121(12):5590-601. PubMed ID: 15366981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations.
    Okamoto Y
    J Mol Graph Model; 2004 May; 22(5):425-39. PubMed ID: 15099838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling enhancement for the quantum mechanical potential based molecular dynamics simulations: a general algorithm and its extension for free energy calculation on rugged energy surface.
    Li H; Yang W
    J Chem Phys; 2007 Mar; 126(11):114104. PubMed ID: 17381193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A divide-and-conquer strategy to improve diffusion sampling in generalized ensemble simulations.
    Min D; Yang W
    J Chem Phys; 2008 Mar; 128(9):094106. PubMed ID: 18331086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations.
    van der Vaart A; Karplus M
    J Chem Phys; 2007 Apr; 126(16):164106. PubMed ID: 17477588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.