These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 18647025)
1. Site-directed electronic tunneling in a dissipative molecular environment. Volkovich R; Toroker MC; Peskin U J Chem Phys; 2008 Jul; 129(3):034501. PubMed ID: 18647025 [TBL] [Abstract][Full Text] [Related]
2. Site-directed electronic tunneling through a vibrating molecular network. Caspary M; Peskin U J Chem Phys; 2006 Nov; 125(18):184703. PubMed ID: 17115775 [TBL] [Abstract][Full Text] [Related]
3. Contact effects on electronic transport in donor-bridge-acceptor complexes interacting with a thermal bath. Volkovich R; Peskin U J Chem Phys; 2006 Dec; 125(24):244505. PubMed ID: 17199353 [TBL] [Abstract][Full Text] [Related]
4. Vibrational anharmonicity effects in electronic tunneling through molecular bridges. Brisker D; Peskin U J Chem Phys; 2006 Sep; 125(11):111103. PubMed ID: 16999458 [TBL] [Abstract][Full Text] [Related]
5. Coherent site-directed transport in complex molecular networks: an effective Hamiltonian approach. Weissman S; Peskin U J Chem Phys; 2010 Mar; 132(11):114116. PubMed ID: 20331290 [TBL] [Abstract][Full Text] [Related]
6. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. Ishizaki A; Fleming GR J Chem Phys; 2009 Jun; 130(23):234111. PubMed ID: 19548715 [TBL] [Abstract][Full Text] [Related]
7. Site-directed deep electronic tunneling through a molecular network. Caspary M; Peskin U J Chem Phys; 2005 Oct; 123(15):151101. PubMed ID: 16252934 [TBL] [Abstract][Full Text] [Related]
8. Promotion of deep tunneling through molecular barriers by electronic-nuclear coupling. Abu-Hilu M; Peskin U J Chem Phys; 2005 Jan; 122(2):021103. PubMed ID: 15638565 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical treatment of thermally activated electron transfer in the inverted region under the fast dielectric relaxation. Zhao Y; Han M; Liang W; Nakamura H J Phys Chem A; 2007 Mar; 111(11):2047-53. PubMed ID: 17311366 [TBL] [Abstract][Full Text] [Related]
10. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations. Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126 [TBL] [Abstract][Full Text] [Related]
12. Effects of intense femtosecond pumping on ultrafast electronic-vibrational dynamics in molecular systems with relaxation. Egorova D; Gelin MF; Thoss M; Wang H; Domcke W J Chem Phys; 2008 Dec; 129(21):214303. PubMed ID: 19063557 [TBL] [Abstract][Full Text] [Related]
13. Effects of anharmonicity on diffusive-controlled symmetric electron transfer rates: From the weak to the strong electronic coupling regions. Zhu W; Zhao Y J Chem Phys; 2008 Nov; 129(18):184111. PubMed ID: 19045390 [TBL] [Abstract][Full Text] [Related]
14. Multimode Jahn-Teller and pseudo-Jahn-Teller interactions in the cyclopropane radical cation: complex vibronic spectra and nonradiative decay dynamics. Venkatesan TS; Mahapatra S; Meyer HD; Köppel H; Cederbaum LS J Phys Chem A; 2007 Mar; 111(10):1746-61. PubMed ID: 17300181 [TBL] [Abstract][Full Text] [Related]
15. Combining the nuclear-electronic orbital approach with vibronic coupling theory: calculation of the tunneling splitting for malonaldehyde. Hazra A; Skone JH; Hammes-Schiffer S J Chem Phys; 2009 Feb; 130(5):054108. PubMed ID: 19206959 [TBL] [Abstract][Full Text] [Related]
16. Picometer-scale electronic control of molecular dynamics inside a single molecule. Lastapis M; Martin M; Riedel D; Hellner L; Comtet G; Dujardin G Science; 2005 May; 308(5724):1000-3. PubMed ID: 15890878 [TBL] [Abstract][Full Text] [Related]
17. Simulation of inelastic electronic tunneling spectra of adsorbates from first principles. Ren H; Yang J; Luo Y J Chem Phys; 2009 Apr; 130(13):134707. PubMed ID: 19355764 [TBL] [Abstract][Full Text] [Related]
18. Does Förster theory predict the rate of electronic energy transfer for a model dyad at low temperature? Curutchet C; Mennucci B; Scholes GD; Beljonne D J Phys Chem B; 2008 Mar; 112(12):3759-66. PubMed ID: 18318527 [TBL] [Abstract][Full Text] [Related]
19. An exploration of electronic structure and nuclear dynamics in tropolone: II. The A (1)B2 (pi* pi) excited state. Burns LA; Murdock D; Vaccaro PH J Chem Phys; 2009 Apr; 130(14):144304. PubMed ID: 19368442 [TBL] [Abstract][Full Text] [Related]
20. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics. Mahapatra S Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]