These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 18647028)
1. POLIR: polarizable, flexible, transferable water potential optimized for IR spectroscopy. Mankoo PK; Keyes T J Chem Phys; 2008 Jul; 129(3):034504. PubMed ID: 18647028 [TBL] [Abstract][Full Text] [Related]
2. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice. Imoto S; Xantheas SS; Saito S J Chem Phys; 2013 Feb; 138(5):054506. PubMed ID: 23406132 [TBL] [Abstract][Full Text] [Related]
3. The vibrational proton potential in bulk liquid water and ice. Burnham CJ; Anick DJ; Mankoo PK; Reiter GF J Chem Phys; 2008 Apr; 128(15):154519. PubMed ID: 18433247 [TBL] [Abstract][Full Text] [Related]
4. Classical Description of the Vibrational Spectroscopy, Structure, and Electrostatics of the Halide Solvation Shell with the POLIR Potential. Ozer G; Keyes T J Phys Chem B; 2015 Jul; 119(29):9312-8. PubMed ID: 25640952 [TBL] [Abstract][Full Text] [Related]
5. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra. Kwac K; Lee KK; Han JB; Oh KI; Cho M J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930 [TBL] [Abstract][Full Text] [Related]
6. FTIR and Ab initio investigations of the MTBE-water complex. Li Z; Singh S J Phys Chem A; 2008 Sep; 112(37):8593-9. PubMed ID: 18714958 [TBL] [Abstract][Full Text] [Related]
7. Vibrational spectra of alpha-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding. Chowdhry BZ; Dines TJ; Jabeen S; Withnall R J Phys Chem A; 2008 Oct; 112(41):10333-47. PubMed ID: 18816033 [TBL] [Abstract][Full Text] [Related]
8. Electric field fluctuations drive vibrational dephasing in water. Eaves JD; Tokmakoff A; Geissler PL J Phys Chem A; 2005 Oct; 109(42):9424-36. PubMed ID: 16866391 [TBL] [Abstract][Full Text] [Related]
9. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water. Habershon S; Fanourgakis GS; Manolopoulos DE J Chem Phys; 2008 Aug; 129(7):074501. PubMed ID: 19044777 [TBL] [Abstract][Full Text] [Related]
10. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum. Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725 [TBL] [Abstract][Full Text] [Related]
11. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. Fanourgakis GS; Xantheas SS J Chem Phys; 2008 Feb; 128(7):074506. PubMed ID: 18298156 [TBL] [Abstract][Full Text] [Related]
12. A quantitative assessment of the accuracy of centroid molecular dynamics for the calculation of the infrared spectrum of liquid water. Paesani F; Voth GA J Chem Phys; 2010 Jan; 132(1):014105. PubMed ID: 20078147 [TBL] [Abstract][Full Text] [Related]
13. Classical simulations with the POLIR potential describe the vibrational spectroscopy and energetics of hydration: divalent cations, from solvation to coordination complex. Kumar R; Keyes T J Am Chem Soc; 2011 Jun; 133(24):9441-50. PubMed ID: 21545136 [TBL] [Abstract][Full Text] [Related]
14. Dynamical properties of confined water nanoclusters: Simulation study of hydrated zeolite NaA: structural and vibrational properties. Demontis P; Gulín-González J; Jobic H; Masia M; Sale R; Suffritti GB ACS Nano; 2008 Aug; 2(8):1603-14. PubMed ID: 19206362 [TBL] [Abstract][Full Text] [Related]
15. Structure, spectra and stability of a tetrafluoromethane-water complex. Mierzwicki K; Mielke Z; Sałdyka M; Coussan S; Roubin P Phys Chem Chem Phys; 2008 Mar; 10(9):1292-7. PubMed ID: 18292864 [TBL] [Abstract][Full Text] [Related]
16. The properties of water: insights from quantum simulations. Paesani F; Voth GA J Phys Chem B; 2009 Apr; 113(17):5702-19. PubMed ID: 19385690 [TBL] [Abstract][Full Text] [Related]
17. Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water-dimer IV: isotope effects in the infrared spectra of D(D2O)2(+), H(D2O)2(+), and D(H2O)2(+) isotopologues. Vendrell O; Gatti F; Meyer HD J Chem Phys; 2009 Jul; 131(3):034308. PubMed ID: 19624198 [TBL] [Abstract][Full Text] [Related]
18. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature. Douady J; Calvo F; Spiegelman F J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191 [TBL] [Abstract][Full Text] [Related]
19. A quantum mechanical strategy to investigate the structure of liquids: the cases of acetonitrile, formamide, and their mixture. Mennucci B; da Silva CO J Phys Chem B; 2008 Jun; 112(22):6803-13. PubMed ID: 18461992 [TBL] [Abstract][Full Text] [Related]
20. Ab initio parameterization of an all-atom polarizable and dissociable force field for water. Pinilla C; Irani AH; Seriani N; Scandolo S J Chem Phys; 2012 Mar; 136(11):114511. PubMed ID: 22443781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]