These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18647339)

  • 1. Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri?
    Llaurens V; Billiard S; Leducq JB; Castric V; Klein EK; Vekemans X
    Evolution; 2008 Oct; 62(10):2545-57. PubMed ID: 18647339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.
    Prigoda NL; Nassuth A; Mable BK
    Mol Biol Evol; 2005 Jul; 22(7):1609-20. PubMed ID: 15858208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.
    Schoen DJ; Busch JW
    Evolution; 2009 Aug; 63(8):2099-113. PubMed ID: 19453382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.
    Bechsgaard J; Bataillon T; Schierup MH
    J Evol Biol; 2004 May; 17(3):554-61. PubMed ID: 15149398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr.
    Bechsgaard JS; Castric V; Charlesworth D; Vekemans X; Schierup MH
    Mol Biol Evol; 2006 Sep; 23(9):1741-50. PubMed ID: 16782760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
    Castric V; Vekemans X
    Mol Ecol; 2004 Oct; 13(10):2873-89. PubMed ID: 15367105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of dominance in sporophytic self-incompatibility systems: I. Genetic load and coevolution of levels of dominance in pollen and pistil.
    Llaurens V; Billiard S; Castric V; Vekemans X
    Evolution; 2009 Sep; 63(9):2427-37. PubMed ID: 19473398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata(Brassicaceae) with sporophytic control of self-incompatibility.
    Mable BK; Schierup MH; Charlesworth D
    Heredity (Edinb); 2003 Jun; 90(6):422-31. PubMed ID: 12764417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Darwinian selection on a selfing locus.
    Shimizu KK; Cork JM; Caicedo AL; Mays CA; Moore RC; Olsen KM; Ruzsa S; Coop G; Bustamante CD; Awadalla P; Purugganan MD
    Science; 2004 Dec; 306(5704):2081-4. PubMed ID: 15604405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites.
    Schueler S; Tusch A; Scholz F
    Mol Ecol; 2006 Oct; 15(11):3231-43. PubMed ID: 16968267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unequal allelic frequencies at the self-incompatibility locus within local populations of Prunus avium L.: an effect of population structure?
    Stoeckel S; Castric V; Mariette S; Vekemans X
    J Evol Biol; 2008 May; 21(3):889-99. PubMed ID: 18284513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
    van Doorn GS; Dieckmann U
    Evolution; 2006 Nov; 60(11):2226-38. PubMed ID: 17236416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift.
    Stoeckel S; Klein EK; Oddou-Muratorio S; Musch B; Mariette S
    Evolution; 2012 Feb; 66(2):486-504. PubMed ID: 22276543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri.
    Leducq JB; Llaurens V; Castric V; Saumitou-Laprade P; Hardy OJ; Vekemans X
    Heredity (Edinb); 2011 Feb; 106(2):319-29. PubMed ID: 20531450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stationary distribution of allele frequencies when selection acts at unlinked loci.
    Fearnhead P
    Theor Popul Biol; 2006 Nov; 70(3):376-86. PubMed ID: 16563450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamics of the haplotype frequencies in populations: study using the Monte Carlo method].
    Grigorenko EL; Shikanian AA; Kidd DR; Dorig R; Kidd KK
    Genetika; 1996 Dec; 32(12):1705-13. PubMed ID: 9102365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ancestral graph and gene genealogy under frequency-dependent selection.
    Neuhauser C
    Theor Popul Biol; 1999 Oct; 56(2):203-14. PubMed ID: 10544069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration rates, frequency-dependent selection and the self-incompatibility locus in Leavenworthia (brassicaceae).
    Joly S; Schoen DJ
    Evolution; 2011 Aug; 65(8):2357-69. PubMed ID: 21790581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary dynamics of self-incompatibility systems.
    Newbigin E; Uyenoyama MK
    Trends Genet; 2005 Sep; 21(9):500-5. PubMed ID: 16023253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.