These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18647659)

  • 1. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels.
    Chou CJ; Jenney FE; Adams MW; Kelly RM
    Metab Eng; 2008 Nov; 10(6):394-404. PubMed ID: 18647659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biochemical diversity of life near and above 100°C in marine environments.
    Adams MW
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():108S-117S. PubMed ID: 21182699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens.
    Zhang F; Zhang Y; Ding J; Dai K; van Loosdrecht MC; Zeng RJ
    Sci Rep; 2014 Jun; 4():5268. PubMed ID: 24920064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.
    McCollom TM; Shock EL
    Geochim Cosmochim Acta; 1997 Oct; 61(20):4375-91. PubMed ID: 11541662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely thermophilic microorganisms for biomass conversion: status and prospects.
    Blumer-Schuette SE; Kataeva I; Westpheling J; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2008 Jun; 19(3):210-7. PubMed ID: 18524567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile
    Topçuoğlu BD; Meydan C; Nguyen TB; Lang SQ; Holden JF
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass.
    Antonopoulou G; Gavala HN; Skiadas IV; Angelopoulos K; Lyberatos G
    Bioresour Technol; 2008 Jan; 99(1):110-9. PubMed ID: 17257834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism in hyperthermophilic microorganisms.
    Kelly RM; Adams MW
    Antonie Van Leeuwenhoek; 1994; 66(1-3):247-70. PubMed ID: 7747936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.
    Wegener G; Krukenberg V; Riedel D; Tegetmeyer HE; Boetius A
    Nature; 2015 Oct; 526(7574):587-90. PubMed ID: 26490622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of a thermophilic microbial fuel cell fed with synthesis gas.
    Hussain A; Mehta P; Raghavan V; Wang H; Guiot SR; Tartakovsky B
    Enzyme Microb Technol; 2012 Aug; 51(3):163-70. PubMed ID: 22759536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.
    Verhaart MR; Bielen AA; van der Oost J; Stams AJ; Kengen SW
    Environ Technol; 2010; 31(8-9):993-1003. PubMed ID: 20662387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen cross-feeders of the human gastrointestinal tract.
    Smith NW; Shorten PR; Altermann EH; Roy NC; McNabb WC
    Gut Microbes; 2019; 10(3):270-288. PubMed ID: 30563420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for biohydrogen and methane production from olive pulp.
    Gavala HN; Skiadas IV; Ahring BK; Lyberatos G
    Water Sci Technol; 2005; 52(1-2):209-15. PubMed ID: 16180430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic systems for hydrogenotrophic methanogens.
    Sarmiento F; Leigh JA; Whitman WB
    Methods Enzymol; 2011; 494():43-73. PubMed ID: 21402209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea.
    Sasaki K; Morita M; Sasaki D; Ohmura N; Igarashi Y
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):7005-13. PubMed ID: 23053110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Life at High Temperatures: Relationships of Molecular Channels in Enzymes of Methanogenic Archaea and Their Growth Temperatures.
    Ginsbach LF; Gonzalez JM
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances.
    Parameswaran P; Torres CI; Lee HS; Krajmalnik-Brown R; Rittmann BE
    Biotechnol Bioeng; 2009 Jun; 103(3):513-23. PubMed ID: 19191353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.