These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18647882)

  • 1. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene.
    Smith JA; Kohn TA; Chetty AK; Ojuka EO
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E698-704. PubMed ID: 18647882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and increases MEF2A binding to the site via a CaMK-dependent mechanism.
    Mukwevho E; Kohn TA; Lang D; Nyatia E; Smith J; Ojuka EO
    Am J Physiol Endocrinol Metab; 2008 Mar; 294(3):E582-8. PubMed ID: 18198354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo.
    Smith JA; Collins M; Grobler LA; Magee CJ; Ojuka EO
    Am J Physiol Endocrinol Metab; 2007 Feb; 292(2):E413-20. PubMed ID: 16985263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEF2A binding to the Glut4 promoter occurs via an AMPK╬▒2-dependent mechanism.
    Gong H; Xie J; Zhang N; Yao L; Zhang Y
    Med Sci Sports Exerc; 2011 Aug; 43(8):1441-50. PubMed ID: 21233771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise increases hyper-acetylation of histones on the Cis-element of NRF-1 binding to the Mef2a promoter: Implications on type 2 diabetes.
    Joseph JS; Ayeleso AO; Mukwevho E
    Biochem Biophys Res Commun; 2017 Apr; 486(1):83-87. PubMed ID: 28263745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+).
    Ojuka EO; Jones TE; Nolte LA; Chen M; Wamhoff BR; Sturek M; Holloszy JO
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1008-13. PubMed ID: 11934664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring.
    Zheng S; Rollet M; Pan YX
    J Nutr Biochem; 2012 Sep; 23(9):1064-71. PubMed ID: 22079207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of CaMKII in regulating GLUT4 expression in skeletal muscle.
    Ojuka EO; Goyaram V; Smith JA
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E322-31. PubMed ID: 22496345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of the GLUT4 adaptive response to exercise in fructose-fed rats.
    Goyaram V; Kohn TA; Ojuka EO
    Am J Physiol Endocrinol Metab; 2014 Feb; 306(3):E275-83. PubMed ID: 24326422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms.
    McGee SL; Hargreaves M
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):395-9. PubMed ID: 16620308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of exercise- and denervation-responsive elements in the mouse GLUT4 gene.
    Tsunoda N; Maruyama K; Cooke DW; Lane DM; Ezaki O
    Biochem Biophys Res Commun; 2000 Jan; 267(3):744-51. PubMed ID: 10673362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein.
    Chou CH; Tsai YL; Hou CW; Lee HH; Chang WH; Lin TW; Hsu TH; Huang YJ; Kuo CH
    J Biomed Sci; 2005 Dec; 12(6):991-8. PubMed ID: 16319996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NF-kappaB, MEF2A, MEF2D and HIF1-a involvement on insulin- and contraction-induced regulation of GLUT4 gene expression in soleus muscle.
    Silva JL; Giannocco G; Furuya DT; Lima GA; Moraes PA; Nachef S; Bordin S; Britto LR; Nunes MT; Machado UF
    Mol Cell Endocrinol; 2005 Aug; 240(1-2):82-93. PubMed ID: 16024167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.
    Garcia-Roves PM; Han DH; Song Z; Jones TE; Hucker KA; Holloszy JO
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E729-36. PubMed ID: 12799316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells.
    Raciti GA; Iadicicco C; Ulianich L; Vind BF; Gaster M; Andreozzi F; Longo M; Teperino R; Ungaro P; Di Jeso B; Formisano P; Beguinot F; Miele C
    Diabetologia; 2010 May; 53(5):955-65. PubMed ID: 20165829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sex differences on human MEF2 regulation during endurance exercise.
    Vissing K; McGee SL; Roepstorff C; Schjerling P; Hargreaves M; Kiens B
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E408-15. PubMed ID: 18042665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma.
    Bai X; Wu L; Liang T; Liu Z; Li J; Li D; Xie H; Yin S; Yu J; Lin Q; Zheng S
    J Cancer Res Clin Oncol; 2008 Jan; 134(1):83-91. PubMed ID: 17611778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin acutely triggers transcription of Slc2a4 gene: participation of the AT-rich, E-box and NFKB-binding sites.
    Moraes PA; Yonamine CY; Pinto Junior DC; Esteves JV; Machado UF; Mori RC
    Life Sci; 2014 Sep; 114(1):36-44. PubMed ID: 25123536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Phenylbutyric acid increases GLUT4 gene expression through suppression of HDAC5 but not endoplasmic reticulum stress.
    Hu H; Li L; Wang C; He H; Mao K; Ma X; Shi R; Oh Y; Zhang F; Lu Y; Wu Q; Gu N
    Cell Physiol Biochem; 2014; 33(6):1899-910. PubMed ID: 25011668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation.
    Fueger PT; Bracy DP; Malabanan CM; Pencek RR; Wasserman DH
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E77-84. PubMed ID: 13129858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.