These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18648218)

  • 1. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases.
    Fomenko DE; Marino SM; Gladyshev VN
    Mol Cells; 2008 Sep; 26(3):228-35. PubMed ID: 18648218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.
    Marino SM; Gladyshev VN
    PLoS Comput Biol; 2009 May; 5(5):e1000383. PubMed ID: 19424433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
    Marino SM; Li Y; Fomenko DE; Agisheva N; Cerny RL; Gladyshev VN
    Biochemistry; 2010 Sep; 49(35):7709-21. PubMed ID: 20698499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basics of thiols and cysteines in redox biology and chemistry.
    Poole LB
    Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional role of cysteines in isopenicillin N synthase. Correlation of cysteine reactivities toward sulfhydryl reagents with kinetic properties of cysteine mutants.
    Kriauciunas A; Frolik CA; Hassell TC; Skatrud PL; Johnson MG; Holbrook NL; Chen VJ
    J Biol Chem; 1991 Jun; 266(18):11779-88. PubMed ID: 2050677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.
    Fomenko DE; Gladyshev VN
    Antioxid Redox Signal; 2012 Feb; 16(3):193-201. PubMed ID: 21902454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases.
    Kim HY; Gladyshev VN
    PLoS Biol; 2005 Dec; 3(12):e375. PubMed ID: 16262444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid sequence of spinach ferredoxin:thioredoxin reductase catalytic subunit and identification of thiol groups constituting a redox-active disulfide and a [4Fe-4S] cluster.
    Chow LP; Iwadate H; Yano K; Kamo M; Tsugita A; Gardet-Salvi L; Stritt-Etter AL; Schürmann P
    Eur J Biochem; 1995 Jul; 231(1):149-56. PubMed ID: 7628465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.
    Chibani K; Tarrago L; Gualberto JM; Wingsle G; Rey P; Jacquot JP; Rouhier N
    Plant Physiol; 2012 Jun; 159(2):592-605. PubMed ID: 22523226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput identification of catalytic redox-active cysteine residues.
    Fomenko DE; Xing W; Adair BM; Thomas DJ; Gladyshev VN
    Science; 2007 Jan; 315(5810):387-9. PubMed ID: 17234949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis.
    Yang M; Flaumenhaft R
    Antioxid Redox Signal; 2021 Nov; 35(13):1134-1155. PubMed ID: 34121445
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures.
    Bhatnagar A; Bandyopadhyay D
    Proteins; 2018 Feb; 86(2):192-209. PubMed ID: 29139156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells.
    West JD
    Chem Res Toxicol; 2022 Oct; 35(10):1676-1689. PubMed ID: 35771680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities.
    Xiao R; Lundström-Ljung J; Holmgren A; Gilbert HF
    J Biol Chem; 2005 Jun; 280(22):21099-106. PubMed ID: 15814611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.