These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 18648218)

  • 21. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases.
    Garcerá A; Barreto L; Piedrafita L; Tamarit J; Herrero E
    Biochem J; 2006 Sep; 398(2):187-96. PubMed ID: 16709151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and redox properties of the leaderless DsbE (CcmG) protein: both active-site cysteines of the reduced form are involved in its function in the Escherichia coli periplasm.
    Li Q; Hu HY; Wang WQ; Xu GJ
    Biol Chem; 2001 Dec; 382(12):1679-86. PubMed ID: 11843181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global approaches for protein thiol redox state detection.
    Knoke LR; Leichert LI
    Curr Opin Chem Biol; 2023 Dec; 77():102390. PubMed ID: 37797572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple cysteine residues are implicated in Janus kinase 2-mediated catalysis.
    Mamoon NM; Smith JK; Chatti K; Lee S; Kundrapu K; Duhé RJ
    Biochemistry; 2007 Dec; 46(51):14810-8. PubMed ID: 18052197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of thiols in antioxidant systems.
    Ulrich K; Jakob U
    Free Radic Biol Med; 2019 Aug; 140():14-27. PubMed ID: 31201851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of thiol-redox pathways in bacteria.
    Ritz D; Beckwith J
    Annu Rev Microbiol; 2001; 55():21-48. PubMed ID: 11544348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
    Snider GW; Dustin CM; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling.
    Tanaka LY; Oliveira PVS; Laurindo FRM
    Antioxid Redox Signal; 2020 Aug; 33(4):280-307. PubMed ID: 31910038
    [No Abstract]   [Full Text] [Related]  

  • 32. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ
    Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.
    Tossounian MA; Pedre B; Wahni K; Erdogan H; Vertommen D; Van Molle I; Messens J
    J Biol Chem; 2015 May; 290(18):11365-75. PubMed ID: 25752606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling.
    Rhee SG; Chae HZ; Kim K
    Free Radic Biol Med; 2005 Jun; 38(12):1543-52. PubMed ID: 15917183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption.
    Harris PS; McGinnis CD; Michel CR; Marentette JO; Reisdorph R; Roede JR; Fritz KS
    Redox Biol; 2023 Aug; 64():102792. PubMed ID: 37390786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R
    Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
    Gallogly MM; Mieyal JJ
    Curr Opin Pharmacol; 2007 Aug; 7(4):381-91. PubMed ID: 17662654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol redox homeostasis in neurodegenerative disease.
    McBean GJ; Aslan M; Griffiths HR; Torrão RC
    Redox Biol; 2015 Aug; 5():186-194. PubMed ID: 25974624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.