These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1. Spain JC; Zylstra GJ; Blake CK; Gibson DT Appl Environ Microbiol; 1989 Oct; 55(10):2648-52. PubMed ID: 2604403 [TBL] [Abstract][Full Text] [Related]
8. Application of A. C.-polarography in a study of p-nitroanisole metabolism and its kinetic properties. Burgschat H; Netter KJ J Pharmacol Exp Ther; 1977 May; 201(2):482-9. PubMed ID: 859107 [TBL] [Abstract][Full Text] [Related]
10. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate. Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348 [TBL] [Abstract][Full Text] [Related]
11. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Zeyer J; Kocher HP; Timmis KN Appl Environ Microbiol; 1986 Aug; 52(2):334-9. PubMed ID: 3752997 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. Zeyer J; Kocher HP J Bacteriol; 1988 Apr; 170(4):1789-94. PubMed ID: 3350791 [TBL] [Abstract][Full Text] [Related]
13. Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase. Qu Y; Shi S; Ma Q; Kong C; Zhou H; Zhang X; Zhou J Appl Biochem Biotechnol; 2013 Apr; 169(7):2064-75. PubMed ID: 23371781 [TBL] [Abstract][Full Text] [Related]
14. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Wallis MG; Chapman SK Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. Lemercier JN; Padmaja S; Cueto R; Squadrito GL; Uppu RM; Pryor WA Arch Biochem Biophys; 1997 Sep; 345(1):160-70. PubMed ID: 9281324 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. Costa DMA; Gómez SV; de Araújo SS; Pereira MS; Alves RB; Favaro DC; Hengge AC; Nagem RAP; Brandão TAS Int J Biol Macromol; 2019 May; 129():588-600. PubMed ID: 30703421 [TBL] [Abstract][Full Text] [Related]
18. A substrate recycling assay for phenolic compounds using tyrosinase and NADH. Brown RS; Male KB; Luong JH Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838 [TBL] [Abstract][Full Text] [Related]
19. Functional modification of an arginine residue on salicylate hydroxylase. Suzuki K; Ohnishi K Biochim Biophys Acta; 1990 Sep; 1040(3):327-36. PubMed ID: 2223838 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Balashova NV; Stolz A; Knackmuss HJ; Kosheleva IA; Naumov AV; Boronin AM Biodegradation; 2001; 12(3):179-88. PubMed ID: 11826899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]