These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 1864847)
21. Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. Xun L; Topp E; Orser CS J Bacteriol; 1992 May; 174(9):2898-902. PubMed ID: 1569020 [TBL] [Abstract][Full Text] [Related]
22. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. Ge L; Seah SY J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659 [TBL] [Abstract][Full Text] [Related]
23. Determination of the position of monooxygenation in the formation of catechol catalyzed by salicylate hydroxylase. Hamzah RY; Tu SC J Biol Chem; 1981 Jun; 256(12):6392-4. PubMed ID: 7240212 [TBL] [Abstract][Full Text] [Related]
24. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6. Spain JC; Gibson DT Appl Environ Microbiol; 1988 Jun; 54(6):1399-404. PubMed ID: 3415220 [TBL] [Abstract][Full Text] [Related]
26. Nucleotide sequence of salicylate hydroxylase gene and its 5'-flanking region of Pseudomonas putida KF715. Lee J; Oh J; Min KR; Kim Y Biochem Biophys Res Commun; 1996 Jan; 218(2):544-8. PubMed ID: 8561793 [TBL] [Abstract][Full Text] [Related]
27. Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. Suske WA; Held M; Schmid A; Fleischmann T; Wubbolts MG; Kohler HP J Biol Chem; 1997 Sep; 272(39):24257-65. PubMed ID: 9305879 [TBL] [Abstract][Full Text] [Related]
28. Remarkable aliphatic hydroxylation by the diiron enzyme toluene 4-monooxygenase in reactions with radical or cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane. Moe LA; Hu Z; Deng D; Austin RN; Groves JT; Fox BG Biochemistry; 2004 Dec; 43(50):15688-701. PubMed ID: 15595825 [TBL] [Abstract][Full Text] [Related]
29. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects. Wang LH; Tu SC J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488 [TBL] [Abstract][Full Text] [Related]
30. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase. Toussaint O; Lerch K Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867 [TBL] [Abstract][Full Text] [Related]
31. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Mitchell KH; Studts JM; Fox BG Biochemistry; 2002 Mar; 41(9):3176-88. PubMed ID: 11863457 [TBL] [Abstract][Full Text] [Related]
32. Exploring the Promiscuity of Phenol Hydroxylase from Pseudomonas stutzeri OX1 for the Biosynthesis of Phenolic Compounds. Wang J; Shen X; Wang J; Yang Y; Yuan Q; Yan Y ACS Synth Biol; 2018 May; 7(5):1238-1243. PubMed ID: 29659242 [TBL] [Abstract][Full Text] [Related]
33. Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Coulombel L; Nolan LC; Nikodinovic J; Doyle EM; O'Connor KE Appl Microbiol Biotechnol; 2011 Mar; 89(6):1867-75. PubMed ID: 21057945 [TBL] [Abstract][Full Text] [Related]
34. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Tinberg CE; Song WJ; Izzo V; Lippard SJ Biochemistry; 2011 Mar; 50(11):1788-98. PubMed ID: 21366224 [TBL] [Abstract][Full Text] [Related]
35. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1. Suske WA; van Berkel WJ; Kohler HP J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214 [TBL] [Abstract][Full Text] [Related]
36. 19F-NMR study on the pH-dependent regioselectivity and rate of the ortho-hydroxylation of 3-fluorophenol by phenol hydroxylase from Trichosporon cutaneum. Implications for the reaction mechanism. Peelen S; Rietjens IM; van Berkel WJ; van Workum WA; Vervoort J Eur J Biochem; 1993 Dec; 218(2):345-53. PubMed ID: 8269923 [TBL] [Abstract][Full Text] [Related]
37. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. Farrell A; Quilty B J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804 [TBL] [Abstract][Full Text] [Related]
38. Metabolism of 2,2'-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2',3-trihydroxybiphenyl. Kohler HP; Schmid A; van der Maarel M J Bacteriol; 1993 Mar; 175(6):1621-8. PubMed ID: 8449871 [TBL] [Abstract][Full Text] [Related]
39. The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Reeve CD; Carver MA; Hopper DJ Biochem J; 1989 Oct; 263(2):431-7. PubMed ID: 2556994 [TBL] [Abstract][Full Text] [Related]
40. Overexpression of salicylate hydroxylase and the crucial role of lys(163) as its NADH binding site. Suzuki K; Asao E; Nakamura Y; Nakamura M; Ohnishi K; Fukuda S J Biochem; 2000 Aug; 128(2):293-9. PubMed ID: 10920265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]