These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18649349)

  • 1. Executive control of spatial attention shifts in the auditory compared to the visual modality.
    Krumbholz K; Nobis EA; Weatheritt RJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1457-69. PubMed ID: 18649349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramodal effect of rightward prismatic adaptation on spatial representations within the ventral attentional system.
    Tissieres I; Fornari E; Clarke S; Crottaz-Herbette S
    Brain Struct Funct; 2018 Apr; 223(3):1459-1471. PubMed ID: 29151115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals.
    Davranche K; Nazarian B; Vidal F; Coull J
    J Cogn Neurosci; 2011 Nov; 23(11):3318-30. PubMed ID: 21452942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay of cue modality and response latency in brain areas supporting crossmodal motor preparation: an event-related fMRI study.
    Fatima Z; McIntosh AR
    Exp Brain Res; 2011 Sep; 214(1):9-17. PubMed ID: 21656217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinotopic effects during spatial audio-visual integration.
    Meienbrock A; Naumer MJ; Doehrmann O; Singer W; Muckli L
    Neuropsychologia; 2007 Feb; 45(3):531-9. PubMed ID: 16797610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans.
    Garg A; Schwartz D; Stevens AA
    Neuropsychologia; 2007 Jun; 45(10):2307-21. PubMed ID: 17397882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
    Salo E; Rinne T; Salonen O; Alho K
    Brain Res; 2013 Feb; 1496():55-69. PubMed ID: 23261663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the inter-hemispheric competition account of visual extinction with combined TMS/fMRI.
    Petitet P; Noonan MP; Bridge H; O'Reilly JX; O'Shea J
    Neuropsychologia; 2015 Jul; 74():63-73. PubMed ID: 25911128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism.
    Sahyoun CP; Belliveau JW; Soulières I; Schwartz S; Mody M
    Neuropsychologia; 2010 Jan; 48(1):86-95. PubMed ID: 19698726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting.
    Huang S; Belliveau JW; Tengshe C; Ahveninen J
    PLoS One; 2012; 7(8):e44062. PubMed ID: 22937153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common neural substrates for the control and effects of visual attention and perceptual bistability.
    Slotnick SD; Yantis S
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):97-108. PubMed ID: 15922162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.