These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18649529)

  • 1. [Morphological characteristics of algae floc and its relation with flotation].
    Wang YH; Wang QS; Wu YB; An Y; Peng XH
    Huan Jing Ke Xue; 2008 Mar; 29(3):688-95. PubMed ID: 18649529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.
    Nan J; Yao M; Chen T; Li S; Wang Z; Feng G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculation kinetics mechanism and floc formation prepared by poly aluminum chloride coupled with polyacrylamide for ship ballast water.
    Zhou Z; Liu S; Jia L
    Water Sci Technol; 2016; 74(1):57-64. PubMed ID: 27386983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The sedimentation rate and fractional dimension during flocculation with modified natural polymer and polymeric aluminum chloride].
    Ma W; Guo L; Xiao J
    Huan Jing Ke Xue; 2001 Jan; 22(1):114-6. PubMed ID: 11382030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The application of polyferric chloride in micro-flocculation deep bed filtration].
    Meng J; Li G; Wang D; Guo J; Luan Z; Tang H
    Huan Jing Ke Xue; 2003 Jan; 24(1):98-102. PubMed ID: 12708297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Microcystis Aeruginosa removal and novel flocculation mechanisms using a novel continuous co-coagulation flotation (CCF).
    Zhang H; Li L; Cheng S; Li C; Liu F; Wang P; Sun L; Huang J; Zhang W; Zhang X
    Sci Total Environ; 2023 Jan; 857(Pt 2):159532. PubMed ID: 36257435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrical charge and flocculation of composite flocculants made of polyaluminium].
    Gao B; Wang Y; Yue Q; Wang X
    Huan Jing Ke Xue; 2003 Jan; 24(1):103-6. PubMed ID: 12708298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Breakage and regrowth of flocs coagulation with polyaluminum chloride (PACl)].
    Zhang ZG; Luan ZK; Zhao Y; Cui JH; Chen ZY; Li YZ
    Huan Jing Ke Xue; 2007 Feb; 28(2):346-51. PubMed ID: 17489195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts.
    Gonzalez-Torres A; Putnam J; Jefferson B; Stuetz RM; Henderson RK
    Water Res; 2014 Sep; 60():197-209. PubMed ID: 24859233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment.
    Huang X; Sun S; Gao B; Yue Q; Wang Y; Li Q
    J Environ Sci (China); 2015 Apr; 30():215-22. PubMed ID: 25872730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of floc structure on membrane permeability in the coagulation-MF process.
    Cho MH; Lee CH; Lee S
    Water Sci Technol; 2005; 51(6-7):143-50. PubMed ID: 16003972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of addition sequence and rapid mixing conditions on use of dual coagulants.
    Kim SH; Kim HK; Moon BH; Seo GT; Yoon CH
    Water Sci Technol; 2006; 53(7):87-94. PubMed ID: 16752768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of COM-peptides/proteins on the properties of flocs formed at different shear rates.
    Filipenska M; Vasatova P; Pivokonska L; Cermakova L; Gonzalez-Torres A; Henderson RK; Naceradska J; Pivokonsky M
    J Environ Sci (China); 2019 Jun; 80():116-127. PubMed ID: 30952329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A promising application of chitosan quaternary ammonium salt to removal of Microcystis aeruginosa cells from drinking water.
    Jin Y; Pei H; Hu W; Zhu Y; Xu H; Ma C; Sun J; Li H
    Sci Total Environ; 2017 Apr; 583():496-504. PubMed ID: 28126284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physical and fractal properties of polyaluminum chloride-humic acid (PACl-HA) flocs].
    Wang YL; Liu J; Du BY
    Huan Jing Ke Xue; 2006 Nov; 27(11):2239-46. PubMed ID: 17326433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring floc formation and breakage.
    Gregory J
    Water Sci Technol; 2004; 50(12):163-70. PubMed ID: 15686017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process.
    Marques RO; Ferreira Filho SS
    Environ Technol; 2017 Apr; 38(7):901-910. PubMed ID: 27666085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of natural soil flocs.
    Kobayashi M
    Water Res; 2005 Sep; 39(14):3273-8. PubMed ID: 16009394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.
    Cao B; Gao B; Liu X; Wang M; Yang Z; Yue Q
    Water Res; 2011 Nov; 45(18):6181-8. PubMed ID: 21959092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.