BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 18649896)

  • 1. Nutrient budgets for European seas: a measure of the effectiveness of nutrient reduction policies.
    Artioli Y; Friedrich J; Gilbert AJ; McQuatters-Gollop A; Mee LD; Vermaat JE; Wulff F; Humborg C; Palmeri L; Pollehne F
    Mar Pollut Bull; 2008 Sep; 56(9):1609-17. PubMed ID: 18649896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.
    Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N
    Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Import-export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage area.
    Asmala E; Saikku L; Vienonen S
    Sci Total Environ; 2011 Nov; 409(23):4917-22. PubMed ID: 21907392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetland management to reduce Baltic Sea eutrophication.
    Paludan C; Alexeyev FE; Drews H; Fleischer S; Fuglsang A; Kindt T; Kowalski P; Moos M; Radlowki A; Stromfors G; Westberg V; Wolter K
    Water Sci Technol; 2002; 45(9):87-94. PubMed ID: 12079128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The main characteristics, problems, and prospects for Western European coastal seas.
    Dauvin JC
    Mar Pollut Bull; 2008; 57(1-5):22-40. PubMed ID: 18061212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental consequence analyses of fish farm emissions related to different scales and exemplified by data from the Baltic--a review.
    Gyllenhammar A; Håkanson L
    Mar Environ Res; 2005 Aug; 60(2):211-43. PubMed ID: 15757750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: application to Italian coastal waters.
    Pettine M; Casentini B; Fazi S; Giovanardi F; Pagnotta R
    Mar Pollut Bull; 2007 Sep; 54(9):1413-26. PubMed ID: 17618654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eutrophication in the Polish coastal zone: the past, present status and future scenarios.
    Łysiak-Pastuszak E; Drgas N; Piatkowska Z
    Mar Pollut Bull; 2004 Aug; 49(3):186-95. PubMed ID: 15245983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling diffuse nutrient flow in eutrophication control scenarios.
    Arheimer B; Andersson L; Larsson M; Lindström G; Olsson J; Pers BC
    Water Sci Technol; 2004; 49(3):37-45. PubMed ID: 15053097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic phosphorus budget for lake-watershed ecosystems.
    Liu Y; Guo HC; Wang LJ; Dai YL; Zhang XM; Li ZH; He B
    J Environ Sci (China); 2006; 18(3):596-603. PubMed ID: 17294664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding human impact on the Baltic ecosystem: changing views in recent decades.
    Elmgren R
    Ambio; 2001 Aug; 30(4-5):222-31. PubMed ID: 11697254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HELCOM Baltic Sea Action Plan--a regional programme of measures for the marine environment based on the Ecosystem Approach.
    Backer H; Leppänen JM; Brusendorff AC; Forsius K; Stankiewicz M; Mehtonen J; Pyhälä M; Laamanen M; Paulomäki H; Vlasov N; Haaranen T
    Mar Pollut Bull; 2010 May; 60(5):642-9. PubMed ID: 20006361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing future nutrient inputs to the Black Sea.
    Strokal MP; Kroeze C; Kopilevych VA; Voytenko LV
    Sci Total Environ; 2014 Jan; 466-467():253-64. PubMed ID: 23906857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of changes in nutrient inputs to the water quality of the shallow Haapsalu Bay, the Baltic Sea.
    Iital A; Brandt N; Gröndahl F; Loigu E; Klõga M
    J Environ Monit; 2010 Aug; 12(8):1531-6. PubMed ID: 20577689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long term change of nutrient concentrations of rivers discharging in European seas.
    Bouraoui F; Grizzetti B
    Sci Total Environ; 2011 Nov; 409(23):4899-916. PubMed ID: 21911245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the response of eutrophication control measures in a Swedish lake.
    Pers BC
    Ambio; 2005 Nov; 34(7):552-8. PubMed ID: 16435745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998-2000--results and problems.
    Schreiber H; Behrendt H; Constantinescu LT; Cvitanic I; Drumea D; Jabucar D; Juran S; Pataki B; Snishko S; Zessner M
    Water Sci Technol; 2005; 51(3-4):283-90. PubMed ID: 15850201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of nutrient limitations in the Bohai Sea.
    Liu H; Yin B
    Mar Environ Res; 2010; 70(3-4):308-17. PubMed ID: 20630583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New perspectives on sea use management: initial findings from European experience with marine spatial planning.
    Douvere F; Ehler CN
    J Environ Manage; 2009 Jan; 90(1):77-88. PubMed ID: 18786758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model.
    Thieu V; Billen G; Garnier J
    Water Res; 2009 Apr; 43(6):1740-54. PubMed ID: 19232666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.