These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 18650780)
1. Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock. Thuijls G; de Haan JJ; Derikx JP; Daissormont I; Hadfoune M; Heineman E; Buurman WA Shock; 2009 Feb; 31(2):164-9. PubMed ID: 18650780 [TBL] [Abstract][Full Text] [Related]
2. Pretreatment with high-fat enteral nutrition reduces endotoxin and tumor necrosis factor-alpha and preserves gut barrier function early after hemorrhagic shock. Luyer MD; Buurman WA; Hadfoune M; Jacobs JA; Konstantinov SR; Dejong CH; Greve JW Shock; 2004 Jan; 21(1):65-71. PubMed ID: 14676686 [TBL] [Abstract][Full Text] [Related]
3. Urine-based detection of intestinal tight junction loss. Thuijls G; Derikx JP; de Haan JJ; Grootjans J; de Bruïne A; Masclee AA; Heineman E; Buurman WA J Clin Gastroenterol; 2010 Jan; 44(1):e14-9. PubMed ID: 19525861 [TBL] [Abstract][Full Text] [Related]
4. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. Liu LB; Xue YX; Liu YH; Wang YB J Neurosci Res; 2008 Apr; 86(5):1153-68. PubMed ID: 18183615 [TBL] [Abstract][Full Text] [Related]
5. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Nagumo Y; Han J; Bellila A; Isoda H; Tanaka T Biochem Biophys Res Commun; 2008 Dec; 377(3):921-5. PubMed ID: 18952063 [TBL] [Abstract][Full Text] [Related]
6. Identification of a novel potential biomarker in a model of hemorrhagic shock and valproic acid treatment. Li Y; Liu B; Dillon ST; Fukudome EY; Kheirbek T; Sailhamer EA; Velmahos G; deMoya M; Libermann TA; Alam HB J Surg Res; 2010 Mar; 159(1):474-81. PubMed ID: 19765733 [TBL] [Abstract][Full Text] [Related]
7. Dislocation of tight junction proteins without F-actin disruption in inactive Crohn's disease. Oshitani N; Watanabe K; Nakamura S; Fujiwara Y; Higuchi K; Arakawa T Int J Mol Med; 2005 Mar; 15(3):407-10. PubMed ID: 15702229 [TBL] [Abstract][Full Text] [Related]
8. Role of stretch on tight junction structure in alveolar epithelial cells. Cavanaugh KJ; Oswari J; Margulies SS Am J Respir Cell Mol Biol; 2001 Nov; 25(5):584-91. PubMed ID: 11713100 [TBL] [Abstract][Full Text] [Related]
10. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Dokladny K; Moseley PL; Ma TY Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G204-12. PubMed ID: 16407590 [TBL] [Abstract][Full Text] [Related]
11. [Role of intestinal lymphatic pathway in pathogenesis of intestine-derived bacteria/endotoxin translocation in rats in shock]. Niu CY; Hou YL; Zhao ZG; Zhang YF; Ji JJ; Qiao HX; Zhang J; Yao YM Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2007 May; 19(5):266-9. PubMed ID: 17490562 [TBL] [Abstract][Full Text] [Related]
12. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Yang R; Han X; Uchiyama T; Watkins SK; Yaguchi A; Delude RL; Fink MP Am J Physiol Gastrointest Liver Physiol; 2003 Sep; 285(3):G621-9. PubMed ID: 12773301 [TBL] [Abstract][Full Text] [Related]
13. Naringenin enhances intestinal barrier function through the expression and cytoskeletal association of tight junction proteins in Caco-2 cells. Noda S; Tanabe S; Suzuki T Mol Nutr Food Res; 2013 Nov; 57(11):2019-28. PubMed ID: 23868418 [TBL] [Abstract][Full Text] [Related]
14. Disruption of tight junctions during polymicrobial sepsis in vivo. Li Q; Zhang Q; Wang C; Liu X; Li N; Li J J Pathol; 2009 Jun; 218(2):210-21. PubMed ID: 19235836 [TBL] [Abstract][Full Text] [Related]
15. Cytoskeletal modulation and tyrosine phosphorylation of tight junction proteins are associated with mainstream cigarette smoke-induced permeability of airway epithelium. Olivera D; Knall C; Boggs S; Seagrave J Exp Toxicol Pathol; 2010 Mar; 62(2):133-43. PubMed ID: 19376691 [TBL] [Abstract][Full Text] [Related]
16. Critical role of actin in modulating BBB permeability. Lai CH; Kuo KH; Leo JM Brain Res Brain Res Rev; 2005 Dec; 50(1):7-13. PubMed ID: 16291072 [TBL] [Abstract][Full Text] [Related]
17. Heparin-binding EGF-like growth factor preserves mesenteric microcirculatory blood flow and protects against intestinal injury in rats subjected to hemorrhagic shock and resuscitation. El-Assal ON; Radulescu A; Besner GE Surgery; 2007 Aug; 142(2):234-42. PubMed ID: 17689691 [TBL] [Abstract][Full Text] [Related]
18. A study of the biologic activity of trauma-hemorrhagic shock mesenteric lymph over time and the relative role of cytokines. Davidson MT; Deitch EA; Lu Q; Osband A; Feketeova E; Németh ZH; Haskó G; Xu DZ Surgery; 2004 Jul; 136(1):32-41. PubMed ID: 15232537 [TBL] [Abstract][Full Text] [Related]
19. Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. Wang D; Naydenov NG; Feygin A; Baranwal S; Kuemmerle JF; Ivanov AI Am J Pathol; 2016 Apr; 186(4):844-58. PubMed ID: 26878213 [TBL] [Abstract][Full Text] [Related]
20. Pancreatic duct ligation abrogates the trauma hemorrhage-induced gut barrier failure and the subsequent production of biologically active intestinal lymph. Caputo FJ; Rupani B; Watkins AC; Barlos D; Vega D; Senthil M; Deitch EA Shock; 2007 Oct; 28(4):441-6. PubMed ID: 17558354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]