BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18650946)

  • 1. The first doubled haploid linkage map for cultivated oat.
    Tanhuanpää P; Kalendar R; Schulman AH; Kiviharju E
    Genome; 2008 Aug; 51(8):560-9. PubMed ID: 18650946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QTLs for important breeding characteristics in the doubled haploid oat progeny.
    Tanhuanpää P; Manninen O; Kiviharju E
    Genome; 2010 Jun; 53(6):482-93. PubMed ID: 20555437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps.
    Portyanko VA; Hoffman DL; Lee M; Holland JB
    Genome; 2001 Apr; 44(2):249-65. PubMed ID: 11341736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials.
    Tanhuanpää P; Manninen O; Beattie A; Eckstein P; Scoles G; Rossnagel B; Kiviharju E
    Genome; 2012 Apr; 55(4):289-301. PubMed ID: 22443510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross 'Ogle/MAM17-5'.
    Zhu S; Kaeppler HF
    Theor Appl Genet; 2003 Jun; 107(1):26-35. PubMed ID: 12721634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oat Anther Culture and Use of DH-Lines for Genetic Mapping.
    Kiviharju E; Moisander S; Tanhuanpää P
    Methods Mol Biol; 2017; 1536():71-93. PubMed ID: 28132144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A doubled haploid rye linkage map with a QTL affecting α-amylase activity.
    Tenhola-Roininen T; Kalendar R; Schulman AH; Tanhuanpää P
    J Appl Genet; 2011 Aug; 52(3):299-304. PubMed ID: 21286900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of SNP markers for short straw in oat (Avena sativa L.).
    Tanhuanpää P; Kalendar R; Laurila J; Schulman AH; Manninen O; Kiviharju E
    Genome; 2006 Mar; 49(3):282-7. PubMed ID: 16604112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L.
    Oliver RE; Jellen EN; Ladizinsky G; Korol AB; Kilian A; Beard JL; Dumlupinar Z; Wisniewski-Morehead NH; Svedin E; Coon M; Redman RR; Maughan PJ; Obert DE; Jackson EW
    Theor Appl Genet; 2011 Nov; 123(7):1159-71. PubMed ID: 21805339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anchored AFLP- and retrotransposon-based map of diploid Avena.
    Yu GX; Wise RP
    Genome; 2000 Oct; 43(5):736-49. PubMed ID: 11081962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population.
    Semagn K; Bjørnstad A; Skinnes H; Marøy AG; Tarkegne Y; William M
    Genome; 2006 May; 49(5):545-55. PubMed ID: 16767179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular marker map in 'Kanota' x 'Ogle' hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework.
    Wight CP; Tinker NA; Kianian SF; Sorrells ME; O'Donoughue LS; Hoffman DL; Groh S; Scoles GJ; Li CD; Webster FH; Phillips RL; Rines HW; Livingston SM; Armstrong KC; Fedak G; Molnar SJ
    Genome; 2003 Feb; 46(1):28-47. PubMed ID: 12669794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A major gene for grain cadmium accumulation in oat (Avena sativa L.).
    Tanhuanpää P; Kalendar R; Schulman AH; Kiviharju E
    Genome; 2007 Jun; 50(6):588-94. PubMed ID: 17632580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton.
    Adawy SS; Diab AA; Atia MA; Hussein EH
    GM Crops Food; 2013; 4(1):36-49. PubMed ID: 23333856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations.
    Jin H; Domier LL; Shen X; Kolb FL
    Genome; 2000 Feb; 43(1):94-101. PubMed ID: 10701118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.).
    Ogundiwin EA; Berke TF; Massoudi M; Black LL; Huestis G; Choi D; Lee S; Prince JP
    Genome; 2005 Aug; 48(4):698-711. PubMed ID: 16094437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers.
    Hashizume T; Shimamoto I; Hirai M
    Theor Appl Genet; 2003 Mar; 106(5):779-85. PubMed ID: 12647050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aneuploid marker assignment in hexaploid oat with the C genome as a reference for determining remnant homoeology.
    Kianian SF; Wu BC; Fox SL; Rines HW; Phillips RL
    Genome; 1997 Jun; 40(3):386-96. PubMed ID: 9202416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement.
    Chaffin AS; Huang YF; Smith S; Bekele WA; Babiker E; Gnanesh BN; Foresman BJ; Blanchard SG; Jay JJ; Reid RW; Wight CP; Chao S; Oliver R; Islamovic E; Kolb FL; McCartney C; Mitchell Fetch JW; Beattie AD; Bjørnstad Å; Bonman JM; Langdon T; Howarth CJ; Brouwer CR; Jellen EN; Klos KE; Poland JA; Hsieh TF; Brown R; Jackson E; Schlueter JA; Tinker NA
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an expanded linkage map and exploration on co-dominant scoring of AFLPs in maize.
    Hao ZF; Li XH; Zhang SH
    Yi Chuan Xue Bao; 2005 Sep; 32(9):960-8. PubMed ID: 16201241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.