These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18650948)

  • 21. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping.
    Rodríguez-Suárez C; Giménez MJ; Gutiérrez N; Avila CM; Machado A; Huttner E; Ramírez MC; Martín AC; Castillo A; Kilian A; Martín A; Atienza SG
    Theor Appl Genet; 2012 Mar; 124(4):713-22. PubMed ID: 22048641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.
    Rodríguez-Suárez C; Atienza SG; Pistón F
    PLoS One; 2011; 6(5):e19885. PubMed ID: 21603624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences.
    Németh AV; Dudits D; Molnár-Láng M; Linc G
    J Appl Genet; 2013 Aug; 54(3):265-9. PubMed ID: 23720008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects for exploitation of disease resistance from Hordeum chilense in cultivated cereals.
    Rubiales D; Niks RE; Carver TL; Ballesteros J; Martín A
    Hereditas; 2001; 135(2-3):161-9. PubMed ID: 12152329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cytogenetic analysis of durum wheat x tritordeum hybrids.
    Lima-Brito J; Guedes-Pinto H; Harrison GE; Heslop-Harrison JS
    Genome; 1997 Jun; 40(3):362-9. PubMed ID: 18464834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines.
    Schneider A; Linc G; Molnár I; Molnár-Láng M
    Genome; 2005 Dec; 48(6):1070-82. PubMed ID: 16391676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fat element-a new marker for chromosome and genome analysis in the Triticeae.
    Badaeva ED; Zoshchuk SA; Paux E; Gay G; Zoshchuk NV; Roger D; Zelenin AV; Bernard M; Feuillet C
    Chromosome Res; 2010 Sep; 18(6):697-709. PubMed ID: 20717716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of genome-specific DNA sequences in Triticeae species.
    Anamthawat-Jónsson K; Heslop-Harrison JS
    Mol Gen Genet; 1993 Aug; 240(2):151-8. PubMed ID: 8355649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal organization of repetitive DNAs in
    Dou Q; Liu R; Yu F
    Comp Cytogenet; 2016; 10(4):465-481. PubMed ID: 28123672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa.
    Badaeva ED; Friebe B; Zoshchuk SA; Zelenin AV; Gill BS
    Chromosome Res; 1998 Dec; 6(8):629-37. PubMed ID: 10099876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis.
    Aliyeva-Schnorr L; Stein N; Houben A
    Chromosome Res; 2016 May; 24(2):231-42. PubMed ID: 26883649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density.
    Vaz Patto MC; Rubiales D; Martín A; Hernández P; Lindhout P; Niks RE; Stam P
    Theor Appl Genet; 2003 May; 106(7):1283-92. PubMed ID: 12748780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding.
    Kwiatek M; Wiśniewska H; Apolinarska B
    J Appl Genet; 2013 May; 54(2):147-55. PubMed ID: 23378244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae.
    Rodríguez-Suárez C; Atienza SG
    BMC Plant Biol; 2012 Nov; 12():200. PubMed ID: 23122232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of reciprocal crosses on agronomic performance of tritordeum.
    Atienza SG; Ramírez MC; Martín A; Ballesteros J
    Genetika; 2007 Aug; 43(8):1046-9. PubMed ID: 17958303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Bread Wheat Lines Enriched in Carotenoids Carrying Hordeum chilense Chromosome Arms in the ph1b Background.
    Rey MD; Calderón MC; Rodrigo MJ; Zacarías L; Alós E; Prieto P
    PLoS One; 2015; 10(8):e0134598. PubMed ID: 26241856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat.
    Tsujimoto H; Mukai Y; Akagawa K; Nagaki K; Fujigaki J; Yamamoto M; Sasakuma T
    Genes Genet Syst; 1997 Oct; 72(5):303-9. PubMed ID: 9511227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Barley telomeres are associated with two different types of satellite DNA sequences.
    Brandes A; Röder MS; Ganal MW
    Chromosome Res; 1995 Aug; 3(5):315-20. PubMed ID: 7551546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system.
    Martín AC; Atienza SG; Ramírez MC; Barro F; Martín A
    Theor Appl Genet; 2010 Oct; 121(6):1093-101. PubMed ID: 20549484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species.
    Badaeva ED; Friebe B; Gill BS
    Genome; 1996 Apr; 39(2):293-306. PubMed ID: 18469894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.