These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18650948)
41. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Badaeva ED; Friebe B; Gill BS Genome; 1996 Apr; 39(2):293-306. PubMed ID: 18469894 [TBL] [Abstract][Full Text] [Related]
42. Cross-species amplification of the Hordeum chilense genome using barley sequence-tagged-sites (STSs). Hernández P; Dorado G; Martín A Hereditas; 2001; 135(2-3):243-6. PubMed ID: 12152342 [TBL] [Abstract][Full Text] [Related]
43. Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae: Triticeae). Orgaard M; Anamthawat-Jónsson K Genome; 2001 Apr; 44(2):275-83. PubMed ID: 11341738 [TBL] [Abstract][Full Text] [Related]
44. FISH landmarks for barley chromosomes (Hordeum vulgare L.). Brown SE; Stephens JL; Lapitan NL; Knudson DL Genome; 1999 Apr; 42(2):274-81. PubMed ID: 10231961 [TBL] [Abstract][Full Text] [Related]
45. Kmasker--a tool for in silico prediction of single-copy FISH probes for the large-genome species Hordeum vulgare. Schmutzer T; Ma L; Pousarebani N; Bull F; Stein N; Houben A; Scholz U Cytogenet Genome Res; 2014; 142(1):66-78. PubMed ID: 24335088 [TBL] [Abstract][Full Text] [Related]
46. Development and molecular cytogenetic identification of new winter wheat--winter barley ('Martonvásári 9 kr1' - 'Igri') disomic addition lines. Szakács E; Molnár-Láng M Genome; 2007 Jan; 50(1):43-50. PubMed ID: 17546070 [TBL] [Abstract][Full Text] [Related]
47. Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Cseh A; Kruppa K; Molnár I; Rakszegi M; Doležel J; Molnár-Láng M Genome; 2011 Oct; 54(10):795-804. PubMed ID: 21919737 [TBL] [Abstract][Full Text] [Related]
48. Rapid verification of wheat-Hordeum introgressions by direct staining of SCAR, STS, and SSR amplicons. Hernández P; Dorado G; Cabrera A; Laurie DA; Snape JW; Martín A Genome; 2002 Feb; 45(1):198-203. PubMed ID: 11908662 [TBL] [Abstract][Full Text] [Related]
49. [Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition]. Adonina IG; Orlovskaia OA; Tereshchenko OY; Koren' LV; Khotyleva LV; Shumnyĭ VK; Salina EA Genetika; 2011 Apr; 47(4):516-26. PubMed ID: 21675241 [TBL] [Abstract][Full Text] [Related]
50. A structural and evolutionary analysis of a dispersed repetitive sequence. Hueros G; Loarce Y; Ferrer E Plant Mol Biol; 1993 Jul; 22(4):635-43. PubMed ID: 8343599 [TBL] [Abstract][Full Text] [Related]
51. Development and characterisation of novel durum wheat Cifuentes Z; Calderón MC; Miguel-Rojas C; Sillero JC; Prieto P Front Plant Sci; 2024; 15():1393796. PubMed ID: 39109054 [TBL] [Abstract][Full Text] [Related]
52. Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH). Zhang S; Zhu M; Shang Y; Wang J; Dawadundup ; Zhuang L; Zhang J; Chu C; Qi Z Genome; 2019 May; 62(5):329-339. PubMed ID: 30933665 [TBL] [Abstract][Full Text] [Related]
54. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Hernández P; Laurie DA; Martín A; Snape JW Theor Appl Genet; 2002 Mar; 104(4):735-739. PubMed ID: 12582681 [TBL] [Abstract][Full Text] [Related]
55. [Barley chromosome identification using genomic in situ hybridization in the genome of backcrossed progeny of barley-wheat amphiploids [H. geniculatum All. (2n = 28) x T. aestivum L. (2n = 42)] (2n = 70)]. Numerova OM; Pershina LA; Salina EA; Shumnyĭ VK Genetika; 2004 Sep; 40(9):1229-33. PubMed ID: 15559151 [TBL] [Abstract][Full Text] [Related]
56. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. She C; Liu J; Diao Y; Hu Z; Song Y J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530 [TBL] [Abstract][Full Text] [Related]
57. Molecular karyotyping of Siberian wild rye (Elymus sibiricus L.) with oligonucleotide fluorescence in situ hybridization (FISH) probes. Xie J; Zhao Y; Yu L; Liu R; Dou Q PLoS One; 2020; 15(1):e0227208. PubMed ID: 31951623 [TBL] [Abstract][Full Text] [Related]
58. Transgene integration and chromosome alterations in two transgenic lines of tritordeum. Barro F; Martín A; Cabrera A Chromosome Res; 2003; 11(6):565-72. PubMed ID: 14516065 [TBL] [Abstract][Full Text] [Related]
59. High-density fluorescence in situ hybridization signal detection on barley (Hordeum vulgare L.) chromosomes with improved probe screening and reprobing procedures. Kato A Genome; 2011 Feb; 54(2):151-9. PubMed ID: 21326371 [TBL] [Abstract][Full Text] [Related]
60. Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat-H. chilense chromosome addition lines. Payne PI; Holt LM; Reader SM; Miller TE Biochem Genet; 1987 Feb; 25(1-2):53-65. PubMed ID: 3579867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]