BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18650965)

  • 1. Dynamics of genome rearrangement in bacterial populations.
    Darling AE; Miklós I; Ragan MA
    PLoS Genet; 2008 Jul; 4(7):e1000128. PubMed ID: 18650965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group-theoretic models of the inversion process in bacterial genomes.
    Egri-Nagy A; Gebhardt V; Tanaka MM; Francis AR
    J Math Biol; 2014 Jul; 69(1):243-65. PubMed ID: 23793228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal rearrangement features of Yersinia pestis strains from natural plague foci in China.
    Liang Y; Xie F; Tang X; Wang M; Zhang E; Zhang Z; Cai H; Wang Y; Shen X; Zhao H; Yu D; Xia L; Hai R
    Am J Trop Med Hyg; 2014 Oct; 91(4):722-8. PubMed ID: 25114008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria.
    Belda E; Moya A; Silva FJ
    Mol Biol Evol; 2005 Jun; 22(6):1456-67. PubMed ID: 15772379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.
    Repar J; Warnecke T
    Mol Biol Evol; 2017 Aug; 34(8):1902-1911. PubMed ID: 28407093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A draft genome of Yersinia pestis from victims of the Black Death.
    Bos KI; Schuenemann VJ; Golding GB; Burbano HA; Waglechner N; Coombes BK; McPhee JB; DeWitte SN; Meyer M; Schmedes S; Wood J; Earn DJ; Herring DA; Bauer P; Poinar HN; Krause J
    Nature; 2011 Oct; 478(7370):506-10. PubMed ID: 21993626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yersinia pestis evolution on a small timescale: comparison of whole genome sequences from North America.
    Auerbach RK; Tuanyok A; Probert WS; Kenefic L; Vogler AJ; Bruce DC; Munk C; Brettin TS; Eppinger M; Ravel J; Wagner DM; Keim P
    PLoS One; 2007 Aug; 2(8):e770. PubMed ID: 17712418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila.
    González J; Casals F; Ruiz A
    Genetics; 2007 Jan; 175(1):167-77. PubMed ID: 17028333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
    Weigand MR; Peng Y; Loparev V; Batra D; Bowden KE; Burroughs M; Cassiday PK; Davis JK; Johnson T; Juieng P; Knipe K; Mathis MH; Pruitt AM; Rowe L; Sheth M; Tondella ML; Williams MM
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of an ancestral Yersinia pestis genome and comparison with an ancient sequence.
    Duchemin W; Daubin V; Tannier E
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S9. PubMed ID: 26450112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yersinia pestis strains isolated in natural plague foci of Caucasus and Transcaucasia in the context of the global evolution of species.
    Pisarenko SV; Evchenko AY; Kovalev DA; Evchenko YМ; Bobrysheva OV; Shapakov NA; Volynkina AS; Kulichenko AN
    Genomics; 2021 Jul; 113(4):1952-1961. PubMed ID: 33862185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.
    Miklós I; Darling AE
    Genome Biol Evol; 2009 Jun; 1():153-64. PubMed ID: 20333186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small Insertions and Deletions Drive Genomic Plasticity during Adaptive Evolution of Yersinia pestis.
    Wu Y; Hao T; Qian X; Zhang X; Song Y; Yang R; Cui Y
    Microbiol Spectr; 2022 Jun; 10(3):e0224221. PubMed ID: 35438532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescent patterns for chromosomal inversions in divergent populations.
    Guerrero RF; Rousset F; Kirkpatrick M
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1587):430-8. PubMed ID: 22201172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for symmetric chromosomal inversions around the replication origin in bacteria.
    Eisen JA; Heidelberg JF; White O; Salzberg SL
    Genome Biol; 2000; 1(6):RESEARCH0011. PubMed ID: 11178265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Impact of a Large-Scale Genomic Inversion That Grossly Disrupts the Relative Positions of the Origin and Terminus Loci of the Streptococcus pyogenes Chromosome.
    Savic DJ; Nguyen SV; McCullor K; McShan WM
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31235514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome architecture constrains horizontal gene transfer in bacteria.
    Hendrickson HL; Barbeau D; Ceschin R; Lawrence JG
    PLoS Genet; 2018 May; 14(5):e1007421. PubMed ID: 29813058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing patterns of microbial evolution using the mauve genome alignment system.
    Darling AE; Treangen TJ; Messeguer X; Perna NT
    Methods Mol Biol; 2007; 396():135-52. PubMed ID: 18025691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive selection near an inversion breakpoint on the neo-X chromosome of Drosophila americana.
    Evans AL; Mena PA; McAllister BF
    Genetics; 2007 Nov; 177(3):1303-19. PubMed ID: 17660565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.