These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1261 related articles for article (PubMed ID: 18651072)
1. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
2. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Vollmer AP; Probstein RF; Gilbert R; Thorsen T Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications. Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092 [TBL] [Abstract][Full Text] [Related]
4. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures. Polinkovsky M; Gutierrez E; Levchenko A; Groisman A Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089 [TBL] [Abstract][Full Text] [Related]
5. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
6. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730 [TBL] [Abstract][Full Text] [Related]
7. In-situ measurement of cellular microenvironments in a microfluidic device. Lin Z; Cherng-Wen T; Roy P; Trau D Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of reversibly adhesive fluidic devices using magnetism. Rafat M; Raad DR; Rowat AC; Auguste DT Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors. Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732 [TBL] [Abstract][Full Text] [Related]
18. Regulating oxygen levels in a microfluidic device. Thomas PC; Raghavan SR; Forry SP Anal Chem; 2011 Nov; 83(22):8821-4. PubMed ID: 21995289 [TBL] [Abstract][Full Text] [Related]
19. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510 [TBL] [Abstract][Full Text] [Related]
20. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]