These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18651081)

  • 1. SmartBuild-a truly plug-n-play modular microfluidic system.
    Yuen PK
    Lab Chip; 2008 Aug; 8(8):1374-8. PubMed ID: 18651081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional modular microfluidic system.
    Yuen PK; Bliss JT; Thompson CC; Peterson RC
    Lab Chip; 2009 Nov; 9(22):3303-5. PubMed ID: 19865740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular microfluidics for gradient generation.
    Sun K; Wang Z; Jiang X
    Lab Chip; 2008 Sep; 8(9):1536-43. PubMed ID: 18818810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular approach to fabrication of three-dimensional microchannel systems in PDMS-application to sheath flow microchips.
    Hofmann O; Niedermann P; Manz A
    Lab Chip; 2001 Dec; 1(2):108-14. PubMed ID: 15100869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Reconfigurable Modular Microfluidic System for Generating Gel Microspheres.
    Chen X; Mo D; Gong M
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32098210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The culture and differentiation of amniotic stem cells using a microfluidic system.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):869-81. PubMed ID: 19370418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.
    Lee WB; Weng CH; Cheng FY; Yeh CS; Lei HY; Lee GB
    Biomed Microdevices; 2009 Feb; 11(1):161-71. PubMed ID: 18756355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
    Hufnagel H; Huebner A; Gülch C; Güse K; Abell C; Hollfelder F
    Lab Chip; 2009 Jun; 9(11):1576-82. PubMed ID: 19458865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices.
    Kamei T
    Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS within a Swagelok: a new platform for microfluidic devices.
    Unnikrishnan S; Jansen H; Berenschot E; Mogulkoc B; Elwenspoek M
    Lab Chip; 2009 Jul; 9(13):1966-9. PubMed ID: 19532974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic reaction network: chemical amplification using nonequilibrium autocatalytic reactions coupled in time.
    Gerdts CJ; Sharoyan DE; Ismagilov RF
    J Am Chem Soc; 2004 May; 126(20):6327-31. PubMed ID: 15149230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical reaction imaging within microfluidic devices using confocal raman spectroscopy: the case of water and deuterium oxide as a model system.
    Sarrazin F; Salmon JB; Talaga D; Servant L
    Anal Chem; 2008 Mar; 80(5):1689-95. PubMed ID: 18225863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Overpass" at the junction of a crossed microchannel: an enabler for 3D microfluidic chips.
    He Y; Huang BL; Lu DX; Zhao J; Xu BB; Zhang R; Lin XF; Chen QD; Wang J; Zhang YL; Sun HB
    Lab Chip; 2012 Oct; 12(20):3866-9. PubMed ID: 22871743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.