These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18651267)

  • 1. Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation.
    Lacasse D; Garon A; Pelletier D
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):1-12. PubMed ID: 18651267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymptotically consistent numerical approximation of hemolysis.
    Farinas MI; Garon A; Lacasse D; N'dri D
    J Biomech Eng; 2006 Oct; 128(5):688-96. PubMed ID: 16995755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial variations in shear stress in a 3-D bifurcation model at low Reynolds numbers.
    Rouhanizadeh M; Lin TC; Arcas D; Hwang J; Hsiai TK
    Ann Biomed Eng; 2005 Oct; 33(10):1360-74. PubMed ID: 16240085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of branching blood flows on parallel computers.
    Yue X; Hwang FN; Shandas R; Cai XC
    Biomed Sci Instrum; 2004; 40():325-30. PubMed ID: 15133979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization.
    Speirs DC; de Souza Neto EA; Perić D
    J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on "A biomechanical model of artery buckling" published on Journal of Biomechanics (volume 40, issue 16, pages 3672-3678).
    Cui F; Zhang Y
    J Biomech; 2010 Mar; 43(4):801-2; author reply 802-3. PubMed ID: 19879584
    [No Abstract]   [Full Text] [Related]  

  • 13. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.
    Naili S; Thiriet M; Ribreau C
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel formulation for blood trauma prediction by a modified power-law mathematical model.
    Grigioni M; Morbiducci U; D'Avenio G; Benedetto GD; Del Gaudio C
    Biomech Model Mechanobiol; 2005 Dec; 4(4):249-60. PubMed ID: 16283225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity.
    Pedrizzetti G; Domenichini F; Tortoriello A; Zovatto L
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):219-31. PubMed ID: 12186714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Eulerian and Lagrangian models for hemolysis estimation.
    Taskin ME; Fraser KH; Zhang T; Wu C; Griffith BP; Wu ZJ
    ASAIO J; 2012; 58(4):363-72. PubMed ID: 22635012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.