These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 18651268)
1. A study of preconditioned Krylov subspace methods with reordering for linear systems from a biphasic v-p finite element formulation. Yang T; Spilker RL Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):13-24. PubMed ID: 18651268 [TBL] [Abstract][Full Text] [Related]
2. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. Un K; Spilker RL J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696 [TBL] [Abstract][Full Text] [Related]
3. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
4. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. Yang T; Spilker RL J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914 [TBL] [Abstract][Full Text] [Related]
5. Towards an analytical model of soft biological tissues. Federico S; Herzog W J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533 [TBL] [Abstract][Full Text] [Related]
6. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
7. Congruency effects on load bearing in diarthrodial joints. Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758 [TBL] [Abstract][Full Text] [Related]
8. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact: Part 1--Derivation of contact boundary conditions. Un K; Spilker RL J Biomech Eng; 2006 Feb; 128(1):124-30. PubMed ID: 16532625 [TBL] [Abstract][Full Text] [Related]
10. [The study of human brain soft-tissue deformations based on the finite element method]. Nie Y; Luo SQ Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Sep; 26(5):342-6. PubMed ID: 16104264 [TBL] [Abstract][Full Text] [Related]
11. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method. Guo H; Spilker RL J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733 [TBL] [Abstract][Full Text] [Related]
12. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting. Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139 [TBL] [Abstract][Full Text] [Related]
13. Dynamic finite element modeling of poroviscoelastic soft tissue. Yang Z; Smolinski P Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152 [TBL] [Abstract][Full Text] [Related]
15. A numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage. Haider MA; Schugart RC J Biomech; 2006; 39(1):177-83. PubMed ID: 16271602 [TBL] [Abstract][Full Text] [Related]
16. Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters. Womack W; Ayturk UM; Puttlitz CM J Biomech Eng; 2011 Jan; 133(1):011009. PubMed ID: 21186899 [TBL] [Abstract][Full Text] [Related]
17. A finite-element approach for Young's modulus reconstruction. Zhu Y; Hall TJ; Jiang J IEEE Trans Med Imaging; 2003 Jul; 22(7):890-901. PubMed ID: 12906243 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study. Cheung JT; Zhang M; Leung AK; Fan YB J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586 [TBL] [Abstract][Full Text] [Related]
19. Reduced-order preconditioning for bidomain simulations. Deo M; Bauer S; Plank G; Vigmond E IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292 [TBL] [Abstract][Full Text] [Related]
20. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]