These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18651270)

  • 1. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.
    Steele BN; Olufsen MS; Taylor CA
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):39-51. PubMed ID: 18651270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection.
    Marsden AL; Vignon-Clementel IE; Chan FP; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2007 Feb; 35(2):250-63. PubMed ID: 17171509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA).
    Morris L; Delassus P; Grace P; Wallis F; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Jan; 28(1):19-26. PubMed ID: 15919225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ; Vignon-Clementel IE; Figueroa CA; LaDisa JF; Jansen KE; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise.
    Cheng CP; Herfkens RJ; Taylor CA
    J Vasc Surg; 2003 Jan; 37(1):118-23. PubMed ID: 12514587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral blood flow responses to exercise after successful correction of coarctation of the aorta.
    Johnson D; Bonnin P; Perrault H; Marchand T; Vobecky SJ; Fournier A; Davignon A
    J Am Coll Cardiol; 1995 Dec; 26(7):1719-24. PubMed ID: 7594109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of pulse transit time as an index of arterial stiffness during exercise.
    Kounalakis SN; Geladas ND
    Cardiovasc Eng; 2009 Sep; 9(3):92-7. PubMed ID: 19657732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution phase-contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer.
    Weber TF; von Tengg-Kobligk H; Kopp-Schneider A; Ley-Zaporozhan J; Kauczor HU; Ley S
    Eur J Radiol; 2011 Oct; 80(1):103-8. PubMed ID: 20674204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inlet boundary conditions for blood flow simulations in truncated arterial networks.
    Willemet M; Lacroix V; Marchandise E
    J Biomech; 2011 Mar; 44(5):897-903. PubMed ID: 21196007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.
    Spilker RL; Feinstein JA; Parker DW; Reddy VM; Taylor CA
    Ann Biomed Eng; 2007 Apr; 35(4):546-59. PubMed ID: 17294117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining exercise-induced blood flow reserve in lower extremities using phase contrast MRI.
    Nagaraj HM; Pednekar A; Corros C; Gupta H; Lloyd SG
    J Magn Reson Imaging; 2008 May; 27(5):1096-102. PubMed ID: 18425829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.