BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 18651766)

  • 1. Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study.
    Dong M; Liu H
    J Phys Chem B; 2008 Aug; 112(33):10280-90. PubMed ID: 18651766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism and metal specificity of bacterial peptide deformylase: a density functional theory QM/MM study.
    Xiao C; Zhang Y
    J Phys Chem B; 2007 Jun; 111(22):6229-35. PubMed ID: 17503802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase.
    Wu XH; Quan JM; Wu YD
    J Phys Chem B; 2007 Jun; 111(22):6236-44. PubMed ID: 17497768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum mechanical/molecular mechanical study on the catalysis of the pyridoxal 5'-phosphate-dependent enzyme L-serine dehydratase.
    Zhao Z; Liu H
    J Phys Chem B; 2008 Oct; 112(41):13091-100. PubMed ID: 18811194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a quantum mechanical/molecular mechanical approach.
    Schürer G; Lanig H; Clark T
    Biochemistry; 2004 May; 43(18):5414-27. PubMed ID: 15122907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study.
    Chen SL; Marino T; Fang WH; Russo N; Himo F
    J Phys Chem B; 2008 Feb; 112(8):2494-500. PubMed ID: 18247603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of the mechanism for peptide hydrolysis by thermolysin.
    Pelmenschikov V; Blomberg MR; Siegbahn PE
    J Biol Inorg Chem; 2002 Mar; 7(3):284-98. PubMed ID: 11935352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interactions and binding free energies between thermolysin and dipeptides: molecular simulations combined with ab initio molecular orbital and classical vibrational analysis.
    Dedachi K; Hirakawa T; Fujita S; Khan MT; Sylte I; Kurita N
    J Comput Chem; 2011 Nov; 32(14):3047-57. PubMed ID: 21815174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin.
    Ragusa S; Mouchet P; Lazennec C; Dive V; Meinnel T
    J Mol Biol; 1999 Jun; 289(5):1445-57. PubMed ID: 10373378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes.
    Frison G; Ohanessian G
    J Comput Chem; 2008 Feb; 29(3):416-33. PubMed ID: 17631650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases.
    Díaz N; Suarez D; Sordo TL
    J Phys Chem B; 2006 Nov; 110(47):24222-30. PubMed ID: 17125395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study.
    Wu J; Xu D; Lu X; Wang C; Guo H; Dunaway-Mariano D
    Biochemistry; 2006 Jan; 45(1):102-12. PubMed ID: 16388585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis.
    Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I
    Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D; Guo H; Cui Q
    J Am Chem Soc; 2007 Sep; 129(35):10814-22. PubMed ID: 17691780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model.
    Leopoldini M; Russo N; Toscano M
    J Phys Chem B; 2006 Jan; 110(2):1063-72. PubMed ID: 16471643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanism of the dinuclear zinc enzyme N-acyl-L-homoserine lactone hydrolase: a quantum chemical study.
    Liao RZ; Yu JG; Himo F
    Inorg Chem; 2009 Feb; 48(4):1442-8. PubMed ID: 19159270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry.
    Liu YH; Konermann L
    Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular production of recombinant thermolysin expressed in Escherichia coli, and its purification and enzymatic characterization.
    Inouye K; Minoda M; Takita T; Sakurama H; Hashida Y; Kusano M; Yasukawa K
    Protein Expr Purif; 2006 Apr; 46(2):248-55. PubMed ID: 16169746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133.
    Rajagopalan PT; Grimme S; Pei D
    Biochemistry; 2000 Feb; 39(4):779-90. PubMed ID: 10651644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method.
    Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N
    J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.